Sensores IMU – uma abordagem completa – Parte 1

On 22 de fevereiro de 2015 by Fabio Oliveira de Paula
Figura 2. Inclinação considerando dois eixos

Figura 2. Inclinação considerando dois eixos

Guia para acelerômetro MPU6050 utilizando o Arduino

O Acelerômetro:

O acelerômetro é um equipamento utilizado para mensurar a aceleração própria. A aceleração própria é diferente daquela estabelecida através da relação entre velocidade e tempo. Sendo que esta considera a sensação de peso medida em um dado referencial.

Acelerômetros são dispositivos que podem funcionar a partir de diversos efeitos físicos e apresenta uma extensa faixa de valores de aceleração. Esses dispositivos são utilizados principalmente em sistemas de posicionamento, sensores de inclinação e sensores de vibração. Normalmente, estes sensores estão presentes em dispositivos de aparelhos celulares.

Modelos muito mais sofisticados são produzidos atualmente. Sua aplicação em larga escala na indústria automotiva promoveu a redução do preço e popularização da tecnologia, que pode ser encontrada até em relógios de pulso, alguns aparelhos de telefonia móvel e videogames.

Existem vários tipos de acelerômetros, tais como: acelerômetro piezoelétrico, acelerômetro por indução magnética, e acelerômetro de capacitância. Este último, utiliza um mecanismo de detecção conhecido como sensor capacitivo de aceleração, para medir tanto as forças de acelerações estáticas quanto dinâmicas.

Para verificar a viabilidade da utilização do dispositivo, são necessárias simulações computacionais. Isto é feito também para um melhor entendimento do projeto.

Na Terra, quando consideramos o acelerômetro colocado em uma superfície plana a medição será de aproximadamente 9,81 m/s2. Na maioria dos casos, a aceleração é medida em força-g, que é basicamente a aceleração sentida como peso. Na superfície da Terra e em condições normais experimentamos 1g.

Na maioria dos casos, a aceleração é tratada como um vetor que pode ser usado para detectar a orientação do dispositivo, mais precisamente pitch (inclinação) e roll (rotação). Quando aciona-se o dispositivo, a aceleração de 1g é distribuída entre os três eixos. Com isso é possível calcular o ângulo do dispositivo em cada um dos 3 eixos.

 

Desenvolvimento

Neste tutorial, utilizaremos a Unidade de Medida Inercial (Inertial Measurement Unit, IMU) MPU6050 e o Arduino para o processamento dos dados. A comunicação entre os dois se dará através do protocolo I2C.

Utilizaremos nesse desenvolvimento a biblioteca Wire.h, responsável pela comunicação I2C, a biblioteca I2Cdev.h, que faz a inicialização da comunicação e MPU6050.h, que opera diretamente com o sensor utilizado. Ao final deste post, todas essas bibliotecas, assim como o código desenvolvido, estão disponibilizadas para download.

 

– Lendo o valor bruto de aceleração

A aquisição dos dados do sensor é bastante simplificada com a utilização da biblioteca supracitada, porém estes valores não correspondem a nenhuma grandeza física, por isso, os consideramos valores brutos.

Para que possamos utilizá-los em quaisquer aplicações, é preciso antes manipulá-los e convertê-los em valores com correspondência física.

 

– Calculando inclinação (pitch) e rotação (roll)

Um dos usos mais comuns de acelerômetro é medir inclinação em um dado eixo. Lembre-se, anteriormente foi mencionado que o acelerômetro sobre uma superfície plana produziria 1g em um dos seus eixos (mais provável no eixo Z). A resposta do acelerômetro não é linear, mas uma onda senoidal, então não se pode simplesmente converter força-g proporcionalmente para determinar em graus.

 

– Medição de inclinação com um eixo

A maneira mais simples para medir a inclinação, é a utilização de apenas um eixo. Basicamente o inverso da função seno dará o ângulo.

Inclinação considerando um eixo

Figura 1. Inclinação considerando um eixo

 

Assim ɵ = sen-1 (x). No entanto, devido à natureza da onda senoidal, pode-se medir a inclinação de forma mais confiável entre -45° a 45°. Além dessa margem, a sensibilidade das medições é significativamente reduzida.

 

– Medindo a inclinação com dois eixos

Um método ligeiramente mais confiável para o cálculo da inclinação é a utilização de dois eixos. Com ele, pode-se medir de -90° a 90°, sem qualquer perda de sensibilidade. Lembrando a geometria cartesiana:

Figura 2. Inclinação considerando dois eixos

Figura 2. Inclinação considerando dois eixos

fig3

 

Usando dois eixos melhora significativamente a precisão de medição do ângulo. No entanto, se o seu acelerômetro for ligeiramente rodado na direção do eixo Y, as medições serão novamente imprecisas, uma vez que alguns dos componentes do vetor do eixo Z serão perdidos em relação ao eixo Y.

 

– Medição de inclinação com três eixos

Para ter a melhor precisão ao medir a inclinação, devem-se usar todos os três eixos para determinar o ângulo. Basicamente, a mesma função arctan é utilizada, mas ao invés de simplesmente dividir por um eixo, calcula-se a magnitude entre outros dois eixos.

fig4

 

Com a equação acima, pode-se calcular o ângulo entre o vetor de gravidade e o eixo X. Dependendo de como o acelerômetro é colocado na superfície, o ângulo pode ser pitch (inclinação) ou roll (rotação).  Basicamente, é preciso determinar quais eixos serão considerados pitch e roll.

Neste caso, será calculado o pitch e roll como este:

fig5

Para implementar essas duas equações no código será utilizada a função atan2, que é fornecida pela biblioteca Math em C e C++. A função atan2  retorna o ângulo em radianos, então lembre-se da relação entre graus e radianos: 1 radiano = 180/π, que é de cerca de ~57°.

[sourcecode language=”c”]
rot.pitch = (atan2(accel.x, sqrt (accel.y * accel.y + accel.z * accel.z))*180.0)/PI;
rot.roll = (atan2(accel.y, sqrt (accel.x * accel.x + accel.z * accel.z))*180.0)/PI;
[/sourcecode]

– Cálculo de velocidade e distância percorrida (apenas para fins educacionais)

Antes de tudo, não é aconselhado o uso o acelerômetro para calcular a velocidade e nem a distância, devido ao fator integrante gerar apenas uma aproximação do valor real no código. Isso implica na obtenção de um erro no valor da distância e da velocidade. Especialmente para a distância, uma vez que para calculá-la, deve-ser aplicar uma dupla integração.

Primeiramente, temos que a aceleração é a variação da velocidade em função do tempo:

fig6

Resolvendo para a velocidade:

fig7

Para calcular a velocidade, é preciso tomar periodicamente medições do acelerômetro e multiplicar exatamente pela diferença de tempo e adicioná-lo à aceleração atual:

fig8

Quanto maior a frequência amostrada, menor o erro gerado. No entanto, como não se pode tomar medições infinitas em um intervalo de tempo, a velocidade gera um erro. Muito provavelmente ele não voltará ao estado inicial 0 (zero).

Para calcular a distância, é só usar a seguinte equação:fig9

E, novamente, periodicamente deve-se calcular a distância percorrida e adicionar à distância previamente calculada:fig10

O mesmo problema do cálculo da velocidade se aplica ao cálculo da distância. Por não ser possível tomar medições infinitas entre o integrante, será uma aproximação e gerará um erro. Na prática, por usar integral dupla, a distância irá gerar o erro muito rapidamente, principalmente porque a velocidade nunca chegará a zero. Será sempre algo próximo de zero, e sua distância só oscilará em qualquer direção.

Para evitar a oscilação dos valores de distância e velocidade, pode-se utilizar um módulo GPS em conjunto com o acelerômetro. Para fundir os sensores deve-se aplicar o filtro complementar simples ou filtro de Kalman. Ou simplesmente não usar o acelerômetro para medir a distância ou velocidade.

 

– Implementação completa em código para Arduino

Finalmente, toda a teoria necessária foi abordada sobre o acelerômetro do IMU MPU6050, como ele funciona e como interpretar e utilizar os dados fornecidos por ele.            Segue exemplo desenvolvido para o Arduino:

[sourcecode language=”c”]
#include "Wire.h"
#include "I2Cdev.h"
#include "MPU6050.h"

MPU6050 accelgyro;

int16_t ax, ay, az;
int16_t gx, gy, gz;

float AccXangle, AccYangle;

unsigned long pT;

void setup() {
Wire.begin(); // Inicia barramento I2C

// initializa conexão serial
Serial.begin(9600);
Serial.println("Initializing I2C devices…");

// verifica conexão com sensores
Serial.println("Testing device connections…");
Serial.println(accelgyro.testConnection() ? "MPU6050 connection successful" : "MPU6050 connection failed");

unsigned long pT = 0; // contador para determinar tempo de inicialização
}

void loop() {
unsigned long cT = micros(); // contar tempo de loop

accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz); // obtem valores brutos dos sensores

unsigned long dT = cT – pT;
pT = cT;

// Converte valor do acelerometro com base nos 3 eixos
AccXangle = (atan2(ax, sqrt(pow(ay,2) + pow(az,2)))*180) / 3.14;
AccYangle = (atan2(ay, sqrt(pow(ax,2) + pow(az,2)))*180) / 3.14;
}

[/sourcecode]

E as bibliotecas:

Wire.h

[sourcecode language=”c”]
/*
TwoWire.h – TWI/I2C library for Arduino & Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Modified 2012 by Todd Krein (gro.nierknull@ddot) to implement repeated starts
*/

#ifndef TwoWire_h
#define TwoWire_h

#include <inttypes.h>
#include "Stream.h"

#define BUFFER_LENGTH 32

class TwoWire : public Stream
{
private:
static uint8_t rxBuffer[];
static uint8_t rxBufferIndex;
static uint8_t rxBufferLength;

static uint8_t txAddress;
static uint8_t txBuffer[];
static uint8_t txBufferIndex;
static uint8_t txBufferLength;

static uint8_t transmitting;
static void (*user_onRequest)(void);
static void (*user_onReceive)(int);
static void onRequestService(void);
static void onReceiveService(uint8_t*, int);
public:
TwoWire();
void begin();
void begin(uint8_t);
void begin(int);
void beginTransmission(uint8_t);
void beginTransmission(int);
uint8_t endTransmission(void);
uint8_t endTransmission(uint8_t);
uint8_t requestFrom(uint8_t, uint8_t);
uint8_t requestFrom(uint8_t, uint8_t, uint8_t);
uint8_t requestFrom(int, int);
uint8_t requestFrom(int, int, int);
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *, size_t);
virtual int available(void);
virtual int read(void);
virtual int peek(void);
virtual void flush(void);
void onReceive( void (*)(int) );
void onRequest( void (*)(void) );

inline size_t write(unsigned long n) { return write((uint8_t)n); }
inline size_t write(long n) { return write((uint8_t)n); }
inline size_t write(unsigned int n) { return write((uint8_t)n); }
inline size_t write(int n) { return write((uint8_t)n); }
using Print::write;
};

extern TwoWire Wire;

#endif
[/sourcecode]

Wire.cpp

[sourcecode language=”c”]
/*
TwoWire.cpp – TWI/I2C library for Wiring & Arduino
Copyright (c) 2006 Nicholas Zambetti. All right reserved.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Modified 2012 by Todd Krein (gro.nierknull@ddot) to implement repeated starts
*/

extern "C" {
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "twi.h"
}

#include "Wire.h"

// Initialize Class Variables //////////////////////////////////////////////////

uint8_t TwoWire::rxBuffer[BUFFER_LENGTH];
uint8_t TwoWire::rxBufferIndex = 0;
uint8_t TwoWire::rxBufferLength = 0;

uint8_t TwoWire::txAddress = 0;
uint8_t TwoWire::txBuffer[BUFFER_LENGTH];
uint8_t TwoWire::txBufferIndex = 0;
uint8_t TwoWire::txBufferLength = 0;

uint8_t TwoWire::transmitting = 0;
void (*TwoWire::user_onRequest)(void);
void (*TwoWire::user_onReceive)(int);

// Constructors ////////////////////////////////////////////////////////////////

TwoWire::TwoWire()
{
}

// Public Methods //////////////////////////////////////////////////////////////

void TwoWire::begin(void)
{
rxBufferIndex = 0;
rxBufferLength = 0;

txBufferIndex = 0;
txBufferLength = 0;

twi_init();
}

void TwoWire::begin(uint8_t address)
{
twi_setAddress(address);
twi_attachSlaveTxEvent(onRequestService);
twi_attachSlaveRxEvent(onReceiveService);
begin();
}

void TwoWire::begin(int address)
{
begin((uint8_t)address);
}

uint8_t TwoWire::requestFrom(uint8_t address, uint8_t quantity, uint8_t sendStop)
{
// clamp to buffer length
if(quantity > BUFFER_LENGTH){
quantity = BUFFER_LENGTH;
}
// perform blocking read into buffer
uint8_t read = twi_readFrom(address, rxBuffer, quantity, sendStop);
// set rx buffer iterator vars
rxBufferIndex = 0;
rxBufferLength = read;

return read;
}

uint8_t TwoWire::requestFrom(uint8_t address, uint8_t quantity)
{
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)true);
}

uint8_t TwoWire::requestFrom(int address, int quantity)
{
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)true);
}

uint8_t TwoWire::requestFrom(int address, int quantity, int sendStop)
{
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)sendStop);
}

void TwoWire::beginTransmission(uint8_t address)
{
// indicate that we are transmitting
transmitting = 1;
// set address of targeted slave
txAddress = address;
// reset tx buffer iterator vars
txBufferIndex = 0;
txBufferLength = 0;
}

void TwoWire::beginTransmission(int address)
{
beginTransmission((uint8_t)address);
}

//
// Originally, ‘endTransmission’ was an f(void) function.
// It has been modified to take one parameter indicating
// whether or not a STOP should be performed on the bus.
// Calling endTransmission(false) allows a sketch to
// perform a repeated start.
//
// WARNING: Nothing in the library keeps track of whether
// the bus tenure has been properly ended with a STOP. It
// is very possible to leave the bus in a hung state if
// no call to endTransmission(true) is made. Some I2C
// devices will behave oddly if they do not see a STOP.
//
uint8_t TwoWire::endTransmission(uint8_t sendStop)
{
// transmit buffer (blocking)
int8_t ret = twi_writeTo(txAddress, txBuffer, txBufferLength, 1, sendStop);
// reset tx buffer iterator vars
txBufferIndex = 0;
txBufferLength = 0;
// indicate that we are done transmitting
transmitting = 0;
return ret;
}

// This provides backwards compatibility with the original
// definition, and expected behaviour, of endTransmission
//
uint8_t TwoWire::endTransmission(void)
{
return endTransmission(true);
}

// must be called in:
// slave tx event callback
// or after beginTransmission(address)
size_t TwoWire::write(uint8_t data)
{
if(transmitting){
// in master transmitter mode
// don’t bother if buffer is full
if(txBufferLength >= BUFFER_LENGTH){
setWriteError();
return 0;
}
// put byte in tx buffer
txBuffer[txBufferIndex] = data;
++txBufferIndex;
// update amount in buffer
txBufferLength = txBufferIndex;
}else{
// in slave send mode
// reply to master
twi_transmit(&data, 1);
}
return 1;
}

// must be called in:
// slave tx event callback
// or after beginTransmission(address)
size_t TwoWire::write(const uint8_t *data, size_t quantity)
{
if(transmitting){
// in master transmitter mode
for(size_t i = 0; i < quantity; ++i){
write(data[i]);
}
}else{
// in slave send mode
// reply to master
twi_transmit(data, quantity);
}
return quantity;
}

// must be called in:
// slave rx event callback
// or after requestFrom(address, numBytes)
int TwoWire::available(void)
{
return rxBufferLength – rxBufferIndex;
}

// must be called in:
// slave rx event callback
// or after requestFrom(address, numBytes)
int TwoWire::read(void)
{
int value = -1;

// get each successive byte on each call
if(rxBufferIndex < rxBufferLength){
value = rxBuffer[rxBufferIndex];
++rxBufferIndex;
}

return value;
}

// must be called in:
// slave rx event callback
// or after requestFrom(address, numBytes)
int TwoWire::peek(void)
{
int value = -1;

if(rxBufferIndex < rxBufferLength){
value = rxBuffer[rxBufferIndex];
}

return value;
}

void TwoWire::flush(void)
{
// XXX: to be implemented.
}

// behind the scenes function that is called when data is received
void TwoWire::onReceiveService(uint8_t* inBytes, int numBytes)
{
// don’t bother if user hasn’t registered a callback
if(!user_onReceive){
return;
}
// don’t bother if rx buffer is in use by a master requestFrom() op
// i know this drops data, but it allows for slight stupidity
// meaning, they may not have read all the master requestFrom() data yet
if(rxBufferIndex < rxBufferLength){
return;
}
// copy twi rx buffer into local read buffer
// this enables new reads to happen in parallel
for(uint8_t i = 0; i < numBytes; ++i){
rxBuffer[i] = inBytes[i];
}
// set rx iterator vars
rxBufferIndex = 0;
rxBufferLength = numBytes;
// alert user program
user_onReceive(numBytes);
}

// behind the scenes function that is called when data is requested
void TwoWire::onRequestService(void)
{
// don’t bother if user hasn’t registered a callback
if(!user_onRequest){
return;
}
// reset tx buffer iterator vars
// !!! this will kill any pending pre-master sendTo() activity
txBufferIndex = 0;
txBufferLength = 0;
// alert user program
user_onRequest();
}

// sets function called on slave write
void TwoWire::onReceive( void (*function)(int) )
{
user_onReceive = function;
}

// sets function called on slave read
void TwoWire::onRequest( void (*function)(void) )
{
user_onRequest = function;
}

// Preinstantiate Objects //////////////////////////////////////////////////////

TwoWire Wire = TwoWire();
[/sourcecode]

I2Cdev.h

[sourcecode language=”c”]
// I2Cdev library collection – Main I2C device class header file
// Abstracts bit and byte I2C R/W functions into a convenient class
// 6/9/2012 by Jeff Rowberg <ten.grebwornull@ffej>
//
// Changelog:
// 2013-05-05 – fix issue with writing bit values to words (Sasquatch/Farzanegan)
// 2012-06-09 – fix major issue with reading > 32 bytes at a time with Arduino Wire
// – add compiler warnings when using outdated or IDE or limited I2Cdev implementation
// 2011-11-01 – fix write*Bits mask calculation (thanks sasquatch @ Arduino forums)
// 2011-10-03 – added automatic Arduino version detection for ease of use
// 2011-10-02 – added Gene Knight’s NBWire TwoWire class implementation with small modifications
// 2011-08-31 – added support for Arduino 1.0 Wire library (methods are different from 0.x)
// 2011-08-03 – added optional timeout parameter to read* methods to easily change from default
// 2011-08-02 – added support for 16-bit registers
// – fixed incorrect Doxygen comments on some methods
// – added timeout value for read operations (thanks mem @ Arduino forums)
// 2011-07-30 – changed read/write function structures to return success or byte counts
// – made all methods static for multi-device memory savings
// 2011-07-28 – initial release

/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/

#ifndef _I2CDEV_H_
#define _I2CDEV_H_

// comment this out if you are using a non-optimal IDE/implementation setting
// but want the compiler to shut up about it
#define I2CDEV_IMPLEMENTATION_WARNINGS

// —————————————————————————–
// I2C interface implementation options
// —————————————————————————–
#define I2CDEV_ARDUINO_WIRE 1 // Wire object from Arduino
#define I2CDEV_BUILTIN_NBWIRE 2 // Tweaked Wire object from Gene Knight’s NBWire project
// ^^^ NBWire implementation is still buggy w/some interrupts!
#define I2CDEV_BUILTIN_FASTWIRE 3 // FastWire object from Francesco Ferrara’s project
// ^^^ FastWire implementation in I2Cdev is INCOMPLETE!
#define I2CDEV_I2CMASTER_LIBRARY 4 // I2C object from DSSCircuits I2C-Master Library at
// https://github.com/DSSCircuits/I2C-Master-Library

// —————————————————————————–
// I2C interface implementation setting
// —————————————————————————–
#define I2CDEV_IMPLEMENTATION I2CDEV_ARDUINO_WIRE

// —————————————————————————–
// Arduino-style "Serial.print" debug constant (uncomment to enable)
// —————————————————————————–
//#define I2CDEV_SERIAL_DEBUG

#ifdef ARDUINO
#if ARDUINO < 100
#include "WProgram.h"
#else
#include "Arduino.h"
#endif
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
#include <Wire.h>
#else
#if I2CDEV_IMPLEMENTATION == I2CDEV_I2CMASTER_LIBRARY
#include <I2C.h>
#endif
#endif
#else
#include "ArduinoWrapper.h"
#endif

// 1000ms default read timeout (modify with "I2Cdev::readTimeout = [ms];")
#define I2CDEV_DEFAULT_READ_TIMEOUT 1000

class I2Cdev {
public:
I2Cdev();

static int8_t readBit(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint8_t *data, uint16_t timeout=I2Cdev::readTimeout);
static int8_t readBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t *data, uint16_t timeout=I2Cdev::readTimeout);
static int8_t readBits(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t *data, uint16_t timeout=I2Cdev::readTimeout);
static int8_t readBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t *data, uint16_t timeout=I2Cdev::readTimeout);
static int8_t readByte(uint8_t devAddr, uint8_t regAddr, uint8_t *data, uint16_t timeout=I2Cdev::readTimeout);
static int8_t readWord(uint8_t devAddr, uint8_t regAddr, uint16_t *data, uint16_t timeout=I2Cdev::readTimeout);
static int8_t readBytes(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint8_t *data, uint16_t timeout=I2Cdev::readTimeout);
static int8_t readWords(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint16_t *data, uint16_t timeout=I2Cdev::readTimeout);

static bool writeBit(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint8_t data);
static bool writeBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t data);
static bool writeBits(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t data);
static bool writeBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t data);
static bool writeByte(uint8_t devAddr, uint8_t regAddr, uint8_t data);
static bool writeWord(uint8_t devAddr, uint8_t regAddr, uint16_t data);
static bool writeBytes(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint8_t *data);
static bool writeWords(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint16_t *data);

static uint16_t readTimeout;
};

#if I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
//////////////////////
// FastWire 0.2
// This is a library to help faster programs to read I2C devices.
// Copyright(C) 2011
// Francesco Ferrara
//////////////////////

/* Master */
#define TW_START 0x08
#define TW_REP_START 0x10

/* Master Transmitter */
#define TW_MT_SLA_ACK 0x18
#define TW_MT_SLA_NACK 0x20
#define TW_MT_DATA_ACK 0x28
#define TW_MT_DATA_NACK 0x30
#define TW_MT_ARB_LOST 0x38

/* Master Receiver */
#define TW_MR_ARB_LOST 0x38
#define TW_MR_SLA_ACK 0x40
#define TW_MR_SLA_NACK 0x48
#define TW_MR_DATA_ACK 0x50
#define TW_MR_DATA_NACK 0x58

#define TW_OK 0
#define TW_ERROR 1

class Fastwire {
private:
static boolean waitInt();

public:
static void setup(int khz, boolean pullup);
static byte write(byte device, byte address, byte value);
static byte readBuf(byte device, byte address, byte *data, byte num);
};
#endif

#if I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE
// NBWire implementation based heavily on code by Gene Knight <moc.toboleTnull@eneG>
// Originally posted on the Arduino forum at http://arduino.cc/forum/index.php/topic,70705.0.html
// Originally offered to the i2cdevlib project at http://arduino.cc/forum/index.php/topic,68210.30.html

#define NBWIRE_BUFFER_LENGTH 32

class TwoWire {
private:
static uint8_t rxBuffer[];
static uint8_t rxBufferIndex;
static uint8_t rxBufferLength;

static uint8_t txAddress;
static uint8_t txBuffer[];
static uint8_t txBufferIndex;
static uint8_t txBufferLength;

// static uint8_t transmitting;
static void (*user_onRequest)(void);
static void (*user_onReceive)(int);
static void onRequestService(void);
static void onReceiveService(uint8_t*, int);

public:
TwoWire();
void begin();
void begin(uint8_t);
void begin(int);
void beginTransmission(uint8_t);
//void beginTransmission(int);
uint8_t endTransmission(uint16_t timeout=0);
void nbendTransmission(void (*function)(int)) ;
uint8_t requestFrom(uint8_t, int, uint16_t timeout=0);
//uint8_t requestFrom(int, int);
void nbrequestFrom(uint8_t, int, void (*function)(int));
void send(uint8_t);
void send(uint8_t*, uint8_t);
//void send(int);
void send(char*);
uint8_t available(void);
uint8_t receive(void);
void onReceive(void (*)(int));
void onRequest(void (*)(void));
};

#define TWI_READY 0
#define TWI_MRX 1
#define TWI_MTX 2
#define TWI_SRX 3
#define TWI_STX 4

#define TW_WRITE 0
#define TW_READ 1

#define TW_MT_SLA_NACK 0x20
#define TW_MT_DATA_NACK 0x30

#define CPU_FREQ 16000000L
#define TWI_FREQ 100000L
#define TWI_BUFFER_LENGTH 32

/* TWI Status is in TWSR, in the top 5 bits: TWS7 – TWS3 */

#define TW_STATUS_MASK (_BV(TWS7)|_BV(TWS6)|_BV(TWS5)|_BV(TWS4)|_BV(TWS3))
#define TW_STATUS (TWSR & TW_STATUS_MASK)
#define TW_START 0x08
#define TW_REP_START 0x10
#define TW_MT_SLA_ACK 0x18
#define TW_MT_SLA_NACK 0x20
#define TW_MT_DATA_ACK 0x28
#define TW_MT_DATA_NACK 0x30
#define TW_MT_ARB_LOST 0x38
#define TW_MR_ARB_LOST 0x38
#define TW_MR_SLA_ACK 0x40
#define TW_MR_SLA_NACK 0x48
#define TW_MR_DATA_ACK 0x50
#define TW_MR_DATA_NACK 0x58
#define TW_ST_SLA_ACK 0xA8
#define TW_ST_ARB_LOST_SLA_ACK 0xB0
#define TW_ST_DATA_ACK 0xB8
#define TW_ST_DATA_NACK 0xC0
#define TW_ST_LAST_DATA 0xC8
#define TW_SR_SLA_ACK 0x60
#define TW_SR_ARB_LOST_SLA_ACK 0x68
#define TW_SR_GCALL_ACK 0x70
#define TW_SR_ARB_LOST_GCALL_ACK 0x78
#define TW_SR_DATA_ACK 0x80
#define TW_SR_DATA_NACK 0x88
#define TW_SR_GCALL_DATA_ACK 0x90
#define TW_SR_GCALL_DATA_NACK 0x98
#define TW_SR_STOP 0xA0
#define TW_NO_INFO 0xF8
#define TW_BUS_ERROR 0x00

//#define _MMIO_BYTE(mem_addr) (*(volatile uint8_t *)(mem_addr))
//#define _SFR_BYTE(sfr) _MMIO_BYTE(_SFR_ADDR(sfr))

#ifndef sbi // set bit
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif // sbi

#ifndef cbi // clear bit
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif // cbi

extern TwoWire Wire;

#endif // I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE

#endif /* _I2CDEV_H_ */
[/sourcecode]

I2Cdev.cpp

[sourcecode language=”c”]
// I2Cdev library collection – Main I2C device class
// Abstracts bit and byte I2C R/W functions into a convenient class
// 6/9/2012 by Jeff Rowberg <ten.grebwornull@ffej>
//
// Changelog:
// 2013-05-05 – fix issue with writing bit values to words (Sasquatch/Farzanegan)
// 2012-06-09 – fix major issue with reading > 32 bytes at a time with Arduino Wire
// – add compiler warnings when using outdated or IDE or limited I2Cdev implementation
// 2011-11-01 – fix write*Bits mask calculation (thanks sasquatch @ Arduino forums)
// 2011-10-03 – added automatic Arduino version detection for ease of use
// 2011-10-02 – added Gene Knight’s NBWire TwoWire class implementation with small modifications
// 2011-08-31 – added support for Arduino 1.0 Wire library (methods are different from 0.x)
// 2011-08-03 – added optional timeout parameter to read* methods to easily change from default
// 2011-08-02 – added support for 16-bit registers
// – fixed incorrect Doxygen comments on some methods
// – added timeout value for read operations (thanks mem @ Arduino forums)
// 2011-07-30 – changed read/write function structures to return success or byte counts
// – made all methods static for multi-device memory savings
// 2011-07-28 – initial release

/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/

#include "I2Cdev.h"

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

#ifdef I2CDEV_IMPLEMENTATION_WARNINGS
#if ARDUINO < 100
#warning Using outdated Arduino IDE with Wire library is functionally limiting.
#warning Arduino IDE v1.0.1+ with I2Cdev Fastwire implementation is recommended.
#warning This I2Cdev implementation does not support:
#warning – Repeated starts conditions
#warning – Timeout detection (some Wire requests block forever)
#elif ARDUINO == 100
#warning Using outdated Arduino IDE with Wire library is functionally limiting.
#warning Arduino IDE v1.0.1+ with I2Cdev Fastwire implementation is recommended.
#warning This I2Cdev implementation does not support:
#warning – Repeated starts conditions
#warning – Timeout detection (some Wire requests block forever)
#elif ARDUINO > 100
/*
#warning Using current Arduino IDE with Wire library is functionally limiting.
#warning Arduino IDE v1.0.1+ with I2CDEV_BUILTIN_FASTWIRE implementation is recommended.
#warning This I2Cdev implementation does not support:
#warning – Timeout detection (some Wire requests block forever)
*/
#endif
#endif

#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE

#error The I2CDEV_BUILTIN_FASTWIRE implementation is known to be broken right now. Patience, Iago!

#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE

#ifdef I2CDEV_IMPLEMENTATION_WARNINGS
#warning Using I2CDEV_BUILTIN_NBWIRE implementation may adversely affect interrupt detection.
#warning This I2Cdev implementation does not support:
#warning – Repeated starts conditions
#endif

// NBWire implementation based heavily on code by Gene Knight <moc.toboleTnull@eneG>
// Originally posted on the Arduino forum at http://arduino.cc/forum/index.php/topic,70705.0.html
// Originally offered to the i2cdevlib project at http://arduino.cc/forum/index.php/topic,68210.30.html
TwoWire Wire;

#elif I2CDEV_IMPLEMENTATION == I2CDEV_I2CMASTER_LIBRARY

#warning Dunno, just don’t want it to feel left out ^_^’

#endif

/** Default constructor.
*/
I2Cdev::I2Cdev() {
}

/** Read a single bit from an 8-bit device register.
* @param devAddr I2C slave device address
* @param regAddr Register regAddr to read from
* @param bitNum Bit position to read (0-7)
* @param data Container for single bit value
* @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout)
* @return Status of read operation (true = success)
*/
int8_t I2Cdev::readBit(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint8_t *data, uint16_t timeout) {
uint8_t b;
uint8_t count = readByte(devAddr, regAddr, &b, timeout);
*data = b & (1 << bitNum);
return count;
}

/** Read a single bit from a 16-bit device register.
* @param devAddr I2C slave device address
* @param regAddr Register regAddr to read from
* @param bitNum Bit position to read (0-15)
* @param data Container for single bit value
* @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout)
* @return Status of read operation (true = success)
*/
int8_t I2Cdev::readBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t *data, uint16_t timeout) {
uint16_t b;
uint8_t count = readWord(devAddr, regAddr, &b, timeout);
*data = b & (1 << bitNum);
return count;
}

/** Read multiple bits from an 8-bit device register.
* @param devAddr I2C slave device address
* @param regAddr Register regAddr to read from
* @param bitStart First bit position to read (0-7)
* @param length Number of bits to read (not more than 8)
* @param data Container for right-aligned value (i.e. ‘101’ read from any bitStart position will equal 0x05)
* @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout)
* @return Status of read operation (true = success)
*/
int8_t I2Cdev::readBits(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t *data, uint16_t timeout) {
// 01101001 read byte
// 76543210 bit numbers
// xxx args: bitStart=4, length=3
// 010 masked
// -> 010 shifted
uint8_t count, b;
if ((count = readByte(devAddr, regAddr, &b, timeout)) != 0) {
uint8_t mask = ((1 << length) – 1) << (bitStart – length + 1);
b &= mask;
b >>= (bitStart – length + 1);
*data = b;
}
return count;
}

/** Read multiple bits from a 16-bit device register.
* @param devAddr I2C slave device address
* @param regAddr Register regAddr to read from
* @param bitStart First bit position to read (0-15)
* @param length Number of bits to read (not more than 16)
* @param data Container for right-aligned value (i.e. ‘101’ read from any bitStart position will equal 0x05)
* @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout)
* @return Status of read operation (1 = success, 0 = failure, -1 = timeout)
*/
int8_t I2Cdev::readBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t *data, uint16_t timeout) {
// 1101011001101001 read byte
// fedcba9876543210 bit numbers
// xxx args: bitStart=12, length=3
// 010 masked
// -> 010 shifted
uint8_t count;
uint16_t w;
if ((count = readWord(devAddr, regAddr, &w, timeout)) != 0) {
uint16_t mask = ((1 << length) – 1) << (bitStart – length + 1);
w &= mask;
w >>= (bitStart – length + 1);
*data = w;
}
return count;
}

/** Read single byte from an 8-bit device register.
* @param devAddr I2C slave device address
* @param regAddr Register regAddr to read from
* @param data Container for byte value read from device
* @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout)
* @return Status of read operation (true = success)
*/
int8_t I2Cdev::readByte(uint8_t devAddr, uint8_t regAddr, uint8_t *data, uint16_t timeout) {
return readBytes(devAddr, regAddr, 1, data, timeout);
}

/** Read single word from a 16-bit device register.
* @param devAddr I2C slave device address
* @param regAddr Register regAddr to read from
* @param data Container for word value read from device
* @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout)
* @return Status of read operation (true = success)
*/
int8_t I2Cdev::readWord(uint8_t devAddr, uint8_t regAddr, uint16_t *data, uint16_t timeout) {
return readWords(devAddr, regAddr, 1, data, timeout);
}

/** Read multiple bytes from an 8-bit device register.
* @param devAddr I2C slave device address
* @param regAddr First register regAddr to read from
* @param length Number of bytes to read
* @param data Buffer to store read data in
* @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout)
* @return Number of bytes read (-1 indicates failure)
*/
int8_t I2Cdev::readBytes(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint8_t *data, uint16_t timeout) {
#ifdef I2CDEV_SERIAL_DEBUG
Serial.print("I2C (0x");
Serial.print(devAddr, HEX);
Serial.print(") reading ");
Serial.print(length, DEC);
Serial.print(" bytes from 0x");
Serial.print(regAddr, HEX);
Serial.print("…");
#endif

int8_t count = 0;
uint32_t t1 = millis();

#if (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE)

#if (ARDUINO < 100)
// Arduino v00xx (before v1.0), Wire library

// I2C/TWI subsystem uses internal buffer that breaks with large data requests
// so if user requests more than BUFFER_LENGTH bytes, we have to do it in
// smaller chunks instead of all at once
for (uint8_t k = 0; k < length; k += min(length, BUFFER_LENGTH)) {
Wire.beginTransmission(devAddr);
Wire.send(regAddr);
Wire.endTransmission();
Wire.beginTransmission(devAddr);
Wire.requestFrom(devAddr, (uint8_t)min(length – k, BUFFER_LENGTH));

for (; Wire.available() && (timeout == 0 || millis() – t1 < timeout); count++) {
data[count] = Wire.receive();
#ifdef I2CDEV_SERIAL_DEBUG
Serial.print(data[count], HEX);
if (count + 1 < length) Serial.print(" ");
#endif
}

Wire.endTransmission();
}
#elif (ARDUINO == 100)
// Arduino v1.0.0, Wire library
// Adds standardized write() and read() stream methods instead of send() and receive()

// I2C/TWI subsystem uses internal buffer that breaks with large data requests
// so if user requests more than BUFFER_LENGTH bytes, we have to do it in
// smaller chunks instead of all at once
for (uint8_t k = 0; k < length; k += min(length, BUFFER_LENGTH)) {
Wire.beginTransmission(devAddr);
Wire.write(regAddr);
Wire.endTransmission();
Wire.beginTransmission(devAddr);
Wire.requestFrom(devAddr, (uint8_t)min(length – k, BUFFER_LENGTH));

for (; Wire.available() && (timeout == 0 || millis() – t1 < timeout); count++) {
data[count] = Wire.read();
#ifdef I2CDEV_SERIAL_DEBUG
Serial.print(data[count], HEX);
if (count + 1 < length) Serial.print(" ");
#endif
}

Wire.endTransmission();
}
#elif (ARDUINO > 100)
// Arduino v1.0.1+, Wire library
// Adds official support for repeated start condition, yay!

// I2C/TWI subsystem uses internal buffer that breaks with large data requests
// so if user requests more than BUFFER_LENGTH bytes, we have to do it in
// smaller chunks instead of all at once
for (uint8_t k = 0; k < length; k += min(length, BUFFER_LENGTH)) {
Wire.beginTransmission(devAddr);
Wire.write(regAddr);
Wire.endTransmission();
Wire.beginTransmission(devAddr);
Wire.requestFrom(devAddr, (uint8_t)min(length – k, BUFFER_LENGTH));

for (; Wire.available() && (timeout == 0 || millis() – t1 < timeout); count++) {
data[count] = Wire.read();
#ifdef I2CDEV_SERIAL_DEBUG
Serial.print(data[count], HEX);
if (count + 1 < length) Serial.print(" ");
#endif
}

Wire.endTransmission();
}
#endif

#elif (I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE)
// Fastwire library (STILL UNDER DEVELOPMENT, NON-FUNCTIONAL!)

// no loop required for fastwire
uint8_t status = Fastwire::readBuf(devAddr, regAddr, data, length);
if (status == 0) {
count = length; // success
} else {
count = -1; // error
}

#elif (I2CDEV_IMPLEMENTATION == I2CDEV_I2CMASTER_LIBRARY)

uint8_t status = I2c.read(devAddr, regAddr, length, data);
if(status == 0) {
count = length;
} else {
count = -1 * status;
}

#endif

// check for timeout
if (timeout > 0 && millis() – t1 >= timeout && count < length) count = -1; // timeout

#ifdef I2CDEV_SERIAL_DEBUG
Serial.print(". Done (");
Serial.print(count, DEC);
Serial.println(" read).");
#endif

return count;
}

/** Read multiple words from a 16-bit device register.
* @param devAddr I2C slave device address
* @param regAddr First register regAddr to read from
* @param length Number of words to read
* @param data Buffer to store read data in
* @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout)
* @return Number of words read (0 indicates failure)
*/
int8_t I2Cdev::readWords(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint16_t *data, uint16_t timeout) {
#ifdef I2CDEV_SERIAL_DEBUG
Serial.print("I2C (0x");
Serial.print(devAddr, HEX);
Serial.print(") reading ");
Serial.print(length, DEC);
Serial.print(" words from 0x");
Serial.print(regAddr, HEX);
Serial.print("…");
#endif

int8_t count = 0;
uint32_t t1 = millis();

#if (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE)

#if (ARDUINO < 100)
// Arduino v00xx (before v1.0), Wire library

// I2C/TWI subsystem uses internal buffer that breaks with large data requests
// so if user requests more than BUFFER_LENGTH bytes, we have to do it in
// smaller chunks instead of all at once
for (uint8_t k = 0; k < length * 2; k += min(length * 2, BUFFER_LENGTH)) {
Wire.beginTransmission(devAddr);
Wire.send(regAddr);
Wire.endTransmission();
Wire.beginTransmission(devAddr);
Wire.requestFrom(devAddr, (uint8_t)(length * 2)); // length=words, this wants bytes

bool msb = true; // starts with MSB, then LSB
for (; Wire.available() && count < length && (timeout == 0 || millis() – t1 < timeout);) {
if (msb) {
// first byte is bits 15-8 (MSb=15)
data[count] = Wire.receive() << 8;
} else {
// second byte is bits 7-0 (LSb=0)
data[count] |= Wire.receive();
#ifdef I2CDEV_SERIAL_DEBUG
Serial.print(data[count], HEX);
if (count + 1 < length) Serial.print(" ");
#endif
count++;
}
msb = !msb;
}

Wire.endTransmission();
}
#elif (ARDUINO == 100)
// Arduino v1.0.0, Wire library
// Adds standardized write() and read() stream methods instead of send() and receive()

// I2C/TWI subsystem uses internal buffer that breaks with large data requests
// so if user requests more than BUFFER_LENGTH bytes, we have to do it in
// smaller chunks instead of all at once
for (uint8_t k = 0; k < length * 2; k += min(length * 2, BUFFER_LENGTH)) {
Wire.beginTransmission(devAddr);
Wire.write(regAddr);
Wire.endTransmission();
Wire.beginTransmission(devAddr);
Wire.requestFrom(devAddr, (uint8_t)(length * 2)); // length=words, this wants bytes

bool msb = true; // starts with MSB, then LSB
for (; Wire.available() && count < length && (timeout == 0 || millis() – t1 < timeout);) {
if (msb) {
// first byte is bits 15-8 (MSb=15)
data[count] = Wire.read() << 8;
} else {
// second byte is bits 7-0 (LSb=0)
data[count] |= Wire.read();
#ifdef I2CDEV_SERIAL_DEBUG
Serial.print(data[count], HEX);
if (count + 1 < length) Serial.print(" ");
#endif
count++;
}
msb = !msb;
}

Wire.endTransmission();
}
#elif (ARDUINO > 100)
// Arduino v1.0.1+, Wire library
// Adds official support for repeated start condition, yay!

// I2C/TWI subsystem uses internal buffer that breaks with large data requests
// so if user requests more than BUFFER_LENGTH bytes, we have to do it in
// smaller chunks instead of all at once
for (uint8_t k = 0; k < length * 2; k += min(length * 2, BUFFER_LENGTH)) {
Wire.beginTransmission(devAddr);
Wire.write(regAddr);
Wire.endTransmission();
Wire.beginTransmission(devAddr);
Wire.requestFrom(devAddr, (uint8_t)(length * 2)); // length=words, this wants bytes

bool msb = true; // starts with MSB, then LSB
for (; Wire.available() && count < length && (timeout == 0 || millis() – t1 < timeout);) {
if (msb) {
// first byte is bits 15-8 (MSb=15)
data[count] = Wire.read() << 8;
} else {
// second byte is bits 7-0 (LSb=0)
data[count] |= Wire.read();
#ifdef I2CDEV_SERIAL_DEBUG
Serial.print(data[count], HEX);
if (count + 1 < length) Serial.print(" ");
#endif
count++;
}
msb = !msb;
}

Wire.endTransmission();
}
#endif

#elif (I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE)
// Fastwire library (STILL UNDER DEVELOPMENT, NON-FUNCTIONAL!)

// no loop required for fastwire
uint16_t intermediate[(uint8_t)length];
uint8_t status = Fastwire::readBuf(devAddr, regAddr, (uint8_t *)intermediate, (uint8_t)(length * 2));
if (status == 0) {
count = length; // success
for (uint8_t i = 0; i < length; i++) {
data[i] = (intermediate[2*i] << 8) | intermediate[2*i + 1];
}
} else {
count = -1; // error
}

#elif (I2CDEV_IMPLEMENTATION == I2CDEV_I2CMASTER_LIBRARY)

uint16_t intermediate[(uint8_t)length];
uint8_t status = I2c.read(devAddr, regAddr, length*2, (uint8_t *)intermediate);
if(status == 0) {
count = length;
for(uint8_t i = 0; i < length; i++) {
data[i] = (intermediate[2*i] << 8) | intermediate[2*i + i];
}
} else {
count = -1 * status;
}
#endif

if (timeout > 0 && millis() – t1 >= timeout && count < length) count = -1; // timeout

#ifdef I2CDEV_SERIAL_DEBUG
Serial.print(". Done (");
Serial.print(count, DEC);
Serial.println(" read).");
#endif

return count;
}

/** write a single bit in an 8-bit device register.
* @param devAddr I2C slave device address
* @param regAddr Register regAddr to write to
* @param bitNum Bit position to write (0-7)
* @param value New bit value to write
* @return Status of operation (true = success)
*/
bool I2Cdev::writeBit(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint8_t data) {
uint8_t b;
readByte(devAddr, regAddr, &b);
b = (data != 0) ? (b | (1 << bitNum)) : (b & ~(1 << bitNum));
return writeByte(devAddr, regAddr, b);
}

/** write a single bit in a 16-bit device register.
* @param devAddr I2C slave device address
* @param regAddr Register regAddr to write to
* @param bitNum Bit position to write (0-15)
* @param value New bit value to write
* @return Status of operation (true = success)
*/
bool I2Cdev::writeBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t data) {
uint16_t w;
readWord(devAddr, regAddr, &w);
w = (data != 0) ? (w | (1 << bitNum)) : (w & ~(1 << bitNum));
return writeWord(devAddr, regAddr, w);
}

/** Write multiple bits in an 8-bit device register.
* @param devAddr I2C slave device address
* @param regAddr Register regAddr to write to
* @param bitStart First bit position to write (0-7)
* @param length Number of bits to write (not more than 8)
* @param data Right-aligned value to write
* @return Status of operation (true = success)
*/
bool I2Cdev::writeBits(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t data) {
// 010 value to write
// 76543210 bit numbers
// xxx args: bitStart=4, length=3
// 00011100 mask byte
// 10101111 original value (sample)
// 10100011 original & ~mask
// 10101011 masked | value
uint8_t b;
if (readByte(devAddr, regAddr, &b) != 0) {
uint8_t mask = ((1 << length) – 1) << (bitStart – length + 1);
data <<= (bitStart – length + 1); // shift data into correct position
data &= mask; // zero all non-important bits in data
b &= ~(mask); // zero all important bits in existing byte
b |= data; // combine data with existing byte
return writeByte(devAddr, regAddr, b);
} else {
return false;
}
}

/** Write multiple bits in a 16-bit device register.
* @param devAddr I2C slave device address
* @param regAddr Register regAddr to write to
* @param bitStart First bit position to write (0-15)
* @param length Number of bits to write (not more than 16)
* @param data Right-aligned value to write
* @return Status of operation (true = success)
*/
bool I2Cdev::writeBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t data) {
// 010 value to write
// fedcba9876543210 bit numbers
// xxx args: bitStart=12, length=3
// 0001110000000000 mask word
// 1010111110010110 original value (sample)
// 1010001110010110 original & ~mask
// 1010101110010110 masked | value
uint16_t w;
if (readWord(devAddr, regAddr, &w) != 0) {
uint16_t mask = ((1 << length) – 1) << (bitStart – length + 1);
data <<= (bitStart – length + 1); // shift data into correct position
data &= mask; // zero all non-important bits in data
w &= ~(mask); // zero all important bits in existing word
w |= data; // combine data with existing word
return writeWord(devAddr, regAddr, w);
} else {
return false;
}
}

/** Write single byte to an 8-bit device register.
* @param devAddr I2C slave device address
* @param regAddr Register address to write to
* @param data New byte value to write
* @return Status of operation (true = success)
*/
bool I2Cdev::writeByte(uint8_t devAddr, uint8_t regAddr, uint8_t data) {
return writeBytes(devAddr, regAddr, 1, &data);
}

/** Write single word to a 16-bit device register.
* @param devAddr I2C slave device address
* @param regAddr Register address to write to
* @param data New word value to write
* @return Status of operation (true = success)
*/
bool I2Cdev::writeWord(uint8_t devAddr, uint8_t regAddr, uint16_t data) {
return writeWords(devAddr, regAddr, 1, &data);
}

/** Write multiple bytes to an 8-bit device register.
* @param devAddr I2C slave device address
* @param regAddr First register address to write to
* @param length Number of bytes to write
* @param data Buffer to copy new data from
* @return Status of operation (true = success)
*/
bool I2Cdev::writeBytes(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint8_t* data) {
#ifdef I2CDEV_SERIAL_DEBUG
Serial.print("I2C (0x");
Serial.print(devAddr, HEX);
Serial.print(") writing ");
Serial.print(length, DEC);
Serial.print(" bytes to 0x");
Serial.print(regAddr, HEX);
Serial.print("…");
#endif
uint8_t status = 0;
#if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE)
Wire.beginTransmission(devAddr);
Wire.send((uint8_t) regAddr); // send address
#elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100)
Wire.beginTransmission(devAddr);
Wire.write((uint8_t) regAddr); // send address
#endif
for (uint8_t i = 0; i < length; i++) {
#if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE)
Wire.send((uint8_t) data[i]);
#elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100)
Wire.write((uint8_t) data[i]);
#elif (I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE)
status = Fastwire::write(devAddr, regAddr, data[i]);
Serial.println(status);
#elif (I2CDEV_IMPLEMENTATION == I2CDEV_I2CMASTER_LIBRARY)
status = I2c.write(devAddr, regAddr, data[i]);
#endif
#ifdef I2CDEV_SERIAL_DEBUG
Serial.print(data[i], HEX);
if (i + 1 < length) Serial.print(" ");
#endif
}
#if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE)
Wire.endTransmission();
#elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100)
status = Wire.endTransmission();
#endif
#ifdef I2CDEV_SERIAL_DEBUG
Serial.println(". Done.");
#endif
return status == 0;
}

/** Write multiple words to a 16-bit device register.
* @param devAddr I2C slave device address
* @param regAddr First register address to write to
* @param length Number of words to write
* @param data Buffer to copy new data from
* @return Status of operation (true = success)
*/
bool I2Cdev::writeWords(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint16_t* data) {
#ifdef I2CDEV_SERIAL_DEBUG
Serial.print("I2C (0x");
Serial.print(devAddr, HEX);
Serial.print(") writing ");
Serial.print(length, DEC);
Serial.print(" words to 0x");
Serial.print(regAddr, HEX);
Serial.print("…");
#endif
uint8_t status = 0;
#if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE)
Wire.beginTransmission(devAddr);
Wire.send(regAddr); // send address
#elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100)
Wire.beginTransmission(devAddr);
Wire.write(regAddr); // send address
#endif
for (uint8_t i = 0; i < length * 2; i++) {
#if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE)
Wire.send((uint8_t)(data[i++] >> 8)); // send MSB
Wire.send((uint8_t)data[i]); // send LSB
#elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100)
Wire.write((uint8_t)(data[i++] >> 8)); // send MSB
Wire.write((uint8_t)data[i]); // send LSB
#elif (I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE)
status = Fastwire::write(devAddr, regAddr, (uint8_t)(data[i++] >> 8));
status = Fastwire::write(devAddr, regAddr + 1, (uint8_t)data[i]);
#elif (I2CDEV_IMPLEMENTATION == I2CDEV_I2CMASTER_LIBRARY)
status = I2c.write((uint8_t)devAddr, (uint8_t)regAddr, (uint8_t)(data[i++] >> 8));
status = I2c.write((uint8_t)devAddr, (uint8_t)regAddr + 1, (uint8_t)data[i]);
#endif
#ifdef I2CDEV_SERIAL_DEBUG
Serial.print(data[i], HEX);
if (i + 1 < length) Serial.print(" ");
#endif
}
#if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE)
Wire.endTransmission();
#elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100)
status = Wire.endTransmission();
#endif
#ifdef I2CDEV_SERIAL_DEBUG
Serial.println(". Done.");
#endif
return status == 0;
}

/** Default timeout value for read operations.
* Set this to 0 to disable timeout detection.
*/
uint16_t I2Cdev::readTimeout = I2CDEV_DEFAULT_READ_TIMEOUT;

#if I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
/*
FastWire 0.2
This is a library to help faster programs to read I2C devices.
Copyright(C) 2011 Francesco Ferrara
occhiobello at gmail dot com
*/

boolean Fastwire::waitInt() {
int l = 250;
while (!(TWCR & (1 << TWINT)) && l– > 0);
return l > 0;
}

void Fastwire::setup(int khz, boolean pullup) {
TWCR = 0;
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega8__) || defined(__AVR_ATmega328P__)
// activate internal pull-ups for twi (PORTC bits 4 & 5)
// as per note from atmega8 manual pg167
if (pullup) PORTC |= ((1 << 4) | (1 << 5));
else PORTC &= ~((1 << 4) | (1 << 5));
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
// activate internal pull-ups for twi (PORTC bits 0 & 1)
if (pullup) PORTC |= ((1 << 0) | (1 << 1));
else PORTC &= ~((1 << 0) | (1 << 1));
#else
// activate internal pull-ups for twi (PORTD bits 0 & 1)
// as per note from atmega128 manual pg204
if (pullup) PORTD |= ((1 << 0) | (1 << 1));
else PORTD &= ~((1 << 0) | (1 << 1));
#endif

TWSR = 0; // no prescaler => prescaler = 1
TWBR = ((16000L / khz) – 16) / 2; // change the I2C clock rate
TWCR = 1 << TWEN; // enable twi module, no interrupt
}

byte Fastwire::write(byte device, byte address, byte value) {
byte twst, retry;

retry = 2;
do {
TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO) | (1 << TWSTA);
if (!waitInt()) return 1;
twst = TWSR & 0xF8;
if (twst != TW_START && twst != TW_REP_START) return 2;

TWDR = device & 0xFE; // send device address without read bit (1)
TWCR = (1 << TWINT) | (1 << TWEN);
if (!waitInt()) return 3;
twst = TWSR & 0xF8;
} while (twst == TW_MT_SLA_NACK && retry– > 0);
if (twst != TW_MT_SLA_ACK) return 4;

TWDR = address; // send data to the previously addressed device
TWCR = (1 << TWINT) | (1 << TWEN);
if (!waitInt()) return 5;
twst = TWSR & 0xF8;
if (twst != TW_MT_DATA_ACK) return 6;

TWDR = value; // send data to the previously addressed device
TWCR = (1 << TWINT) | (1 << TWEN);
if (!waitInt()) return 7;
twst = TWSR & 0xF8;
if (twst != TW_MT_DATA_ACK) return 8;

return 0;
}

byte Fastwire::readBuf(byte device, byte address, byte *data, byte num) {
byte twst, retry;

retry = 2;
do {
TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO) | (1 << TWSTA);
if (!waitInt()) return 16;
twst = TWSR & 0xF8;
if (twst != TW_START && twst != TW_REP_START) return 17;

TWDR = device & 0xfe; // send device address to write
TWCR = (1 << TWINT) | (1 << TWEN);
if (!waitInt()) return 18;
twst = TWSR & 0xF8;
} while (twst == TW_MT_SLA_NACK && retry– > 0);
if (twst != TW_MT_SLA_ACK) return 19;

TWDR = address; // send data to the previously addressed device
TWCR = (1 << TWINT) | (1 << TWEN);
if (!waitInt()) return 20;
twst = TWSR & 0xF8;
if (twst != TW_MT_DATA_ACK) return 21;

/***/

retry = 2;
do {
TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO) | (1 << TWSTA);
if (!waitInt()) return 22;
twst = TWSR & 0xF8;
if (twst != TW_START && twst != TW_REP_START) return 23;

TWDR = device | 0x01; // send device address with the read bit (1)
TWCR = (1 << TWINT) | (1 << TWEN);
if (!waitInt()) return 24;
twst = TWSR & 0xF8;
} while (twst == TW_MR_SLA_NACK && retry– > 0);
if (twst != TW_MR_SLA_ACK) return 25;

for(uint8_t i = 0; i < num; i++) {
if (i == num – 1)
TWCR = (1 << TWINT) | (1 << TWEN);
else
TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWEA);
if (!waitInt()) return 26;
twst = TWSR & 0xF8;
if (twst != TW_MR_DATA_ACK && twst != TW_MR_DATA_NACK) return twst;
data[i] = TWDR;
}

return 0;
}
#endif

#if I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE
// NBWire implementation based heavily on code by Gene Knight <moc.toboleTnull@eneG>
// Originally posted on the Arduino forum at http://arduino.cc/forum/index.php/topic,70705.0.html
// Originally offered to the i2cdevlib project at http://arduino.cc/forum/index.php/topic,68210.30.html

/*
call this version 1.0

Offhand, the only funky part that I can think of is in nbrequestFrom, where the buffer
length and index are set *before* the data is actually read. The problem is that these
are variables local to the TwoWire object, and by the time we actually have read the
data, and know what the length actually is, we have no simple access to the object’s
variables. The actual bytes read *is* given to the callback function, though.

The ISR code for a slave receiver is commented out. I don’t have that setup, and can’t
verify it at this time. Save it for 2.0!

The handling of the read and write processes here is much like in the demo sketch code:
the process is broken down into sequential functions, where each registers the next as a
callback, essentially.

For example, for the Read process, twi_read00 just returns if TWI is not yet in a
ready state. When there’s another interrupt, and the interface *is* ready, then it
sets up the read, starts it, and registers twi_read01 as the function to call after
the *next* interrupt. twi_read01, then, just returns if the interface is still in a
"reading" state. When the reading is done, it copies the information to the buffer,
cleans up, and calls the user-requested callback function with the actual number of
bytes read.

The writing is similar.

Questions, comments and problems can go to moc.toboleTnull@eneG.

Thumbs Up!
Gene Knight

*/

uint8_t TwoWire::rxBuffer[NBWIRE_BUFFER_LENGTH];
uint8_t TwoWire::rxBufferIndex = 0;
uint8_t TwoWire::rxBufferLength = 0;

uint8_t TwoWire::txAddress = 0;
uint8_t TwoWire::txBuffer[NBWIRE_BUFFER_LENGTH];
uint8_t TwoWire::txBufferIndex = 0;
uint8_t TwoWire::txBufferLength = 0;

//uint8_t TwoWire::transmitting = 0;
void (*TwoWire::user_onRequest)(void);
void (*TwoWire::user_onReceive)(int);

static volatile uint8_t twi_transmitting;
static volatile uint8_t twi_state;
static uint8_t twi_slarw;
static volatile uint8_t twi_error;
static uint8_t twi_masterBuffer[TWI_BUFFER_LENGTH];
static volatile uint8_t twi_masterBufferIndex;
static uint8_t twi_masterBufferLength;
static uint8_t twi_rxBuffer[TWI_BUFFER_LENGTH];
static volatile uint8_t twi_rxBufferIndex;
//static volatile uint8_t twi_Interrupt_Continue_Command;
static volatile uint8_t twi_Return_Value;
static volatile uint8_t twi_Done;
void (*twi_cbendTransmissionDone)(int);
void (*twi_cbreadFromDone)(int);

void twi_init() {
// initialize state
twi_state = TWI_READY;

// activate internal pull-ups for twi
// as per note from atmega8 manual pg167
sbi(PORTC, 4);
sbi(PORTC, 5);

// initialize twi prescaler and bit rate
cbi(TWSR, TWPS0); // TWI Status Register – Prescaler bits
cbi(TWSR, TWPS1);

/* twi bit rate formula from atmega128 manual pg 204
SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))
note: TWBR should be 10 or higher for master mode
It is 72 for a 16mhz Wiring board with 100kHz TWI */

TWBR = ((CPU_FREQ / TWI_FREQ) – 16) / 2; // bitrate register
// enable twi module, acks, and twi interrupt

TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA);

/* TWEN – TWI Enable Bit
TWIE – TWI Interrupt Enable
TWEA – TWI Enable Acknowledge Bit
TWINT – TWI Interrupt Flag
TWSTA – TWI Start Condition
*/
}

typedef struct {
uint8_t address;
uint8_t* data;
uint8_t length;
uint8_t wait;
uint8_t i;
} twi_Write_Vars;

twi_Write_Vars *ptwv = 0;
static void (*fNextInterruptFunction)(void) = 0;

void twi_Finish(byte bRetVal) {
if (ptwv) {
free(ptwv);
ptwv = 0;
}
twi_Done = 0xFF;
twi_Return_Value = bRetVal;
fNextInterruptFunction = 0;
}

uint8_t twii_WaitForDone(uint16_t timeout) {
uint32_t endMillis = millis() + timeout;
while (!twi_Done && (timeout == 0 || millis() < endMillis)) continue;
return twi_Return_Value;
}

void twii_SetState(uint8_t ucState) {
twi_state = ucState;
}

void twii_SetError(uint8_t ucError) {
twi_error = ucError ;
}

void twii_InitBuffer(uint8_t ucPos, uint8_t ucLength) {
twi_masterBufferIndex = 0;
twi_masterBufferLength = ucLength;
}

void twii_CopyToBuf(uint8_t* pData, uint8_t ucLength) {
uint8_t i;
for (i = 0; i < ucLength; ++i) {
twi_masterBuffer[i] = pData[i];
}
}

void twii_CopyFromBuf(uint8_t *pData, uint8_t ucLength) {
uint8_t i;
for (i = 0; i < ucLength; ++i) {
pData[i] = twi_masterBuffer[i];
}
}

void twii_SetSlaRW(uint8_t ucSlaRW) {
twi_slarw = ucSlaRW;
}

void twii_SetStart() {
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);
}

void twi_write01() {
if (TWI_MTX == twi_state) return; // blocking test
twi_transmitting = 0 ;
if (twi_error == 0xFF)
twi_Finish (0); // success
else if (twi_error == TW_MT_SLA_NACK)
twi_Finish (2); // error: address send, nack received
else if (twi_error == TW_MT_DATA_NACK)
twi_Finish (3); // error: data send, nack received
else
twi_Finish (4); // other twi error
if (twi_cbendTransmissionDone) return twi_cbendTransmissionDone(twi_Return_Value);
return;
}

void twi_write00() {
if (TWI_READY != twi_state) return; // blocking test
if (TWI_BUFFER_LENGTH < ptwv -> length) {
twi_Finish(1); // end write with error 1
return;
}
twi_Done = 0x00; // show as working
twii_SetState(TWI_MTX); // to transmitting
twii_SetError(0xFF); // to No Error
twii_InitBuffer(0, ptwv -> length); // pointer and length
twii_CopyToBuf(ptwv -> data, ptwv -> length); // get the data
twii_SetSlaRW((ptwv -> address << 1) | TW_WRITE); // write command
twii_SetStart(); // start the cycle
fNextInterruptFunction = twi_write01; // next routine
return twi_write01();
}

void twi_writeTo(uint8_t address, uint8_t* data, uint8_t length, uint8_t wait) {
uint8_t i;
ptwv = (twi_Write_Vars *)malloc(sizeof(twi_Write_Vars));
ptwv -> address = address;
ptwv -> data = data;
ptwv -> length = length;
ptwv -> wait = wait;
fNextInterruptFunction = twi_write00;
return twi_write00();
}

void twi_read01() {
if (TWI_MRX == twi_state) return; // blocking test
if (twi_masterBufferIndex < ptwv -> length) ptwv -> length = twi_masterBufferIndex;
twii_CopyFromBuf(ptwv -> data, ptwv -> length);
twi_Finish(ptwv -> length);
if (twi_cbreadFromDone) return twi_cbreadFromDone(twi_Return_Value);
return;
}

void twi_read00() {
if (TWI_READY != twi_state) return; // blocking test
if (TWI_BUFFER_LENGTH < ptwv -> length) twi_Finish(0); // error return
twi_Done = 0x00; // show as working
twii_SetState(TWI_MRX); // reading
twii_SetError(0xFF); // reset error
twii_InitBuffer(0, ptwv -> length – 1); // init to one less than length
twii_SetSlaRW((ptwv -> address << 1) | TW_READ); // read command
twii_SetStart(); // start cycle
fNextInterruptFunction = twi_read01;
return twi_read01();
}

void twi_readFrom(uint8_t address, uint8_t* data, uint8_t length) {
uint8_t i;

ptwv = (twi_Write_Vars *)malloc(sizeof(twi_Write_Vars));
ptwv -> address = address;
ptwv -> data = data;
ptwv -> length = length;
fNextInterruptFunction = twi_read00;
return twi_read00();
}

void twi_reply(uint8_t ack) {
// transmit master read ready signal, with or without ack
if (ack){
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT) | _BV(TWEA);
} else {
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT);
}
}

void twi_stop(void) {
// send stop condition
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTO);

// wait for stop condition to be exectued on bus
// TWINT is not set after a stop condition!
while (TWCR & _BV(TWSTO)) {
continue;
}

// update twi state
twi_state = TWI_READY;
}

void twi_releaseBus(void) {
// release bus
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT);

// update twi state
twi_state = TWI_READY;
}

SIGNAL(TWI_vect) {
switch (TW_STATUS) {
// All Master
case TW_START: // sent start condition
case TW_REP_START: // sent repeated start condition
// copy device address and r/w bit to output register and ack
TWDR = twi_slarw;
twi_reply(1);
break;

// Master Transmitter
case TW_MT_SLA_ACK: // slave receiver acked address
case TW_MT_DATA_ACK: // slave receiver acked data
// if there is data to send, send it, otherwise stop
if (twi_masterBufferIndex < twi_masterBufferLength) {
// copy data to output register and ack
TWDR = twi_masterBuffer[twi_masterBufferIndex++];
twi_reply(1);
} else {
twi_stop();
}
break;

case TW_MT_SLA_NACK: // address sent, nack received
twi_error = TW_MT_SLA_NACK;
twi_stop();
break;

case TW_MT_DATA_NACK: // data sent, nack received
twi_error = TW_MT_DATA_NACK;
twi_stop();
break;

case TW_MT_ARB_LOST: // lost bus arbitration
twi_error = TW_MT_ARB_LOST;
twi_releaseBus();
break;

// Master Receiver
case TW_MR_DATA_ACK: // data received, ack sent
// put byte into buffer
twi_masterBuffer[twi_masterBufferIndex++] = TWDR;

case TW_MR_SLA_ACK: // address sent, ack received
// ack if more bytes are expected, otherwise nack
if (twi_masterBufferIndex < twi_masterBufferLength) {
twi_reply(1);
} else {
twi_reply(0);
}
break;

case TW_MR_DATA_NACK: // data received, nack sent
// put final byte into buffer
twi_masterBuffer[twi_masterBufferIndex++] = TWDR;

case TW_MR_SLA_NACK: // address sent, nack received
twi_stop();
break;

// TW_MR_ARB_LOST handled by TW_MT_ARB_LOST case

// Slave Receiver (NOT IMPLEMENTED YET)
/*
case TW_SR_SLA_ACK: // addressed, returned ack
case TW_SR_GCALL_ACK: // addressed generally, returned ack
case TW_SR_ARB_LOST_SLA_ACK: // lost arbitration, returned ack
case TW_SR_ARB_LOST_GCALL_ACK: // lost arbitration, returned ack
// enter slave receiver mode
twi_state = TWI_SRX;

// indicate that rx buffer can be overwritten and ack
twi_rxBufferIndex = 0;
twi_reply(1);
break;

case TW_SR_DATA_ACK: // data received, returned ack
case TW_SR_GCALL_DATA_ACK: // data received generally, returned ack
// if there is still room in the rx buffer
if (twi_rxBufferIndex < TWI_BUFFER_LENGTH) {
// put byte in buffer and ack
twi_rxBuffer[twi_rxBufferIndex++] = TWDR;
twi_reply(1);
} else {
// otherwise nack
twi_reply(0);
}
break;

case TW_SR_STOP: // stop or repeated start condition received
// put a null char after data if there’s room
if (twi_rxBufferIndex < TWI_BUFFER_LENGTH) {
twi_rxBuffer[twi_rxBufferIndex] = 0;
}

// sends ack and stops interface for clock stretching
twi_stop();

// callback to user defined callback
twi_onSlaveReceive(twi_rxBuffer, twi_rxBufferIndex);

// since we submit rx buffer to "wire" library, we can reset it
twi_rxBufferIndex = 0;

// ack future responses and leave slave receiver state
twi_releaseBus();
break;

case TW_SR_DATA_NACK: // data received, returned nack
case TW_SR_GCALL_DATA_NACK: // data received generally, returned nack
// nack back at master
twi_reply(0);
break;

// Slave Transmitter
case TW_ST_SLA_ACK: // addressed, returned ack
case TW_ST_ARB_LOST_SLA_ACK: // arbitration lost, returned ack
// enter slave transmitter mode
twi_state = TWI_STX;

// ready the tx buffer index for iteration
twi_txBufferIndex = 0;

// set tx buffer length to be zero, to verify if user changes it
twi_txBufferLength = 0;

// request for txBuffer to be filled and length to be set
// note: user must call twi_transmit(bytes, length) to do this
twi_onSlaveTransmit();

// if they didn’t change buffer & length, initialize it
if (0 == twi_txBufferLength) {
twi_txBufferLength = 1;
twi_txBuffer[0] = 0x00;
}

// transmit first byte from buffer, fall through

case TW_ST_DATA_ACK: // byte sent, ack returned
// copy data to output register
TWDR = twi_txBuffer[twi_txBufferIndex++];

// if there is more to send, ack, otherwise nack
if (twi_txBufferIndex < twi_txBufferLength) {
twi_reply(1);
} else {
twi_reply(0);
}
break;

case TW_ST_DATA_NACK: // received nack, we are done
case TW_ST_LAST_DATA: // received ack, but we are done already!
// ack future responses
twi_reply(1);
// leave slave receiver state
twi_state = TWI_READY;
break;
*/

// all
case TW_NO_INFO: // no state information
break;

case TW_BUS_ERROR: // bus error, illegal stop/start
twi_error = TW_BUS_ERROR;
twi_stop();
break;
}

if (fNextInterruptFunction) return fNextInterruptFunction();
}

TwoWire::TwoWire() { }

void TwoWire::begin(void) {
rxBufferIndex = 0;
rxBufferLength = 0;

txBufferIndex = 0;
txBufferLength = 0;

twi_init();
}

void TwoWire::beginTransmission(uint8_t address) {
//beginTransmission((uint8_t)address);

// indicate that we are transmitting
twi_transmitting = 1;

// set address of targeted slave
txAddress = address;

// reset tx buffer iterator vars
txBufferIndex = 0;
txBufferLength = 0;
}

uint8_t TwoWire::endTransmission(uint16_t timeout) {
// transmit buffer (blocking)
//int8_t ret =
twi_cbendTransmissionDone = NULL;
twi_writeTo(txAddress, txBuffer, txBufferLength, 1);
int8_t ret = twii_WaitForDone(timeout);

// reset tx buffer iterator vars
txBufferIndex = 0;
txBufferLength = 0;

// indicate that we are done transmitting
// twi_transmitting = 0;
return ret;
}

void TwoWire::nbendTransmission(void (*function)(int)) {
twi_cbendTransmissionDone = function;
twi_writeTo(txAddress, txBuffer, txBufferLength, 1);
return;
}

void TwoWire::send(uint8_t data) {
if (twi_transmitting) {
// in master transmitter mode
// don’t bother if buffer is full
if (txBufferLength >= NBWIRE_BUFFER_LENGTH) {
return;
}

// put byte in tx buffer
txBuffer[txBufferIndex] = data;
++txBufferIndex;

// update amount in buffer
txBufferLength = txBufferIndex;
} else {
// in slave send mode
// reply to master
//twi_transmit(&data, 1);
}
}

uint8_t TwoWire::receive(void) {
// default to returning null char
// for people using with char strings
uint8_t value = 0;

// get each successive byte on each call
if (rxBufferIndex < rxBufferLength) {
value = rxBuffer[rxBufferIndex];
++rxBufferIndex;
}

return value;
}

uint8_t TwoWire::requestFrom(uint8_t address, int quantity, uint16_t timeout) {
// clamp to buffer length
if (quantity > NBWIRE_BUFFER_LENGTH) {
quantity = NBWIRE_BUFFER_LENGTH;
}

// perform blocking read into buffer
twi_cbreadFromDone = NULL;
twi_readFrom(address, rxBuffer, quantity);
uint8_t read = twii_WaitForDone(timeout);

// set rx buffer iterator vars
rxBufferIndex = 0;
rxBufferLength = read;

return read;
}

void TwoWire::nbrequestFrom(uint8_t address, int quantity, void (*function)(int)) {
// clamp to buffer length
if (quantity > NBWIRE_BUFFER_LENGTH) {
quantity = NBWIRE_BUFFER_LENGTH;
}

// perform blocking read into buffer
twi_cbreadFromDone = function;
twi_readFrom(address, rxBuffer, quantity);
//uint8_t read = twii_WaitForDone();

// set rx buffer iterator vars
//rxBufferIndex = 0;
//rxBufferLength = read;

rxBufferIndex = 0;
rxBufferLength = quantity; // this is a hack

return; //read;
}

uint8_t TwoWire::available(void) {
return rxBufferLength – rxBufferIndex;
}

#endif
[/sourcecode]

MPU6050.h

[sourcecode language=”c”]
// I2Cdev library collection – MPU6050 I2C device class
// Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
// 10/3/2011 by Jeff Rowberg <ten.grebwornull@ffej>
// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
//
// Changelog:
// … – ongoing debug release

// NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE
// DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
// YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.

/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/

#ifndef _MPU6050_H_
#define _MPU6050_H_

#include "I2Cdev.h"
#include <avr/pgmspace.h>

#define MPU6050_ADDRESS_AD0_LOW 0x68 // address pin low (GND), default for InvenSense evaluation board
#define MPU6050_ADDRESS_AD0_HIGH 0x69 // address pin high (VCC)
#define MPU6050_DEFAULT_ADDRESS MPU6050_ADDRESS_AD0_LOW

#define MPU6050_RA_XG_OFFS_TC 0x00 //[7] PWR_MODE, [6:1] XG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_YG_OFFS_TC 0x01 //[7] PWR_MODE, [6:1] YG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_ZG_OFFS_TC 0x02 //[7] PWR_MODE, [6:1] ZG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_X_FINE_GAIN 0x03 //[7:0] X_FINE_GAIN
#define MPU6050_RA_Y_FINE_GAIN 0x04 //[7:0] Y_FINE_GAIN
#define MPU6050_RA_Z_FINE_GAIN 0x05 //[7:0] Z_FINE_GAIN
#define MPU6050_RA_XA_OFFS_H 0x06 //[15:0] XA_OFFS
#define MPU6050_RA_XA_OFFS_L_TC 0x07
#define MPU6050_RA_YA_OFFS_H 0x08 //[15:0] YA_OFFS
#define MPU6050_RA_YA_OFFS_L_TC 0x09
#define MPU6050_RA_ZA_OFFS_H 0x0A //[15:0] ZA_OFFS
#define MPU6050_RA_ZA_OFFS_L_TC 0x0B
#define MPU6050_RA_XG_OFFS_USRH 0x13 //[15:0] XG_OFFS_USR
#define MPU6050_RA_XG_OFFS_USRL 0x14
#define MPU6050_RA_YG_OFFS_USRH 0x15 //[15:0] YG_OFFS_USR
#define MPU6050_RA_YG_OFFS_USRL 0x16
#define MPU6050_RA_ZG_OFFS_USRH 0x17 //[15:0] ZG_OFFS_USR
#define MPU6050_RA_ZG_OFFS_USRL 0x18
#define MPU6050_RA_SMPLRT_DIV 0x19
#define MPU6050_RA_CONFIG 0x1A
#define MPU6050_RA_GYRO_CONFIG 0x1B
#define MPU6050_RA_ACCEL_CONFIG 0x1C
#define MPU6050_RA_FF_THR 0x1D
#define MPU6050_RA_FF_DUR 0x1E
#define MPU6050_RA_MOT_THR 0x1F
#define MPU6050_RA_MOT_DUR 0x20
#define MPU6050_RA_ZRMOT_THR 0x21
#define MPU6050_RA_ZRMOT_DUR 0x22
#define MPU6050_RA_FIFO_EN 0x23
#define MPU6050_RA_I2C_MST_CTRL 0x24
#define MPU6050_RA_I2C_SLV0_ADDR 0x25
#define MPU6050_RA_I2C_SLV0_REG 0x26
#define MPU6050_RA_I2C_SLV0_CTRL 0x27
#define MPU6050_RA_I2C_SLV1_ADDR 0x28
#define MPU6050_RA_I2C_SLV1_REG 0x29
#define MPU6050_RA_I2C_SLV1_CTRL 0x2A
#define MPU6050_RA_I2C_SLV2_ADDR 0x2B
#define MPU6050_RA_I2C_SLV2_REG 0x2C
#define MPU6050_RA_I2C_SLV2_CTRL 0x2D
#define MPU6050_RA_I2C_SLV3_ADDR 0x2E
#define MPU6050_RA_I2C_SLV3_REG 0x2F
#define MPU6050_RA_I2C_SLV3_CTRL 0x30
#define MPU6050_RA_I2C_SLV4_ADDR 0x31
#define MPU6050_RA_I2C_SLV4_REG 0x32
#define MPU6050_RA_I2C_SLV4_DO 0x33
#define MPU6050_RA_I2C_SLV4_CTRL 0x34
#define MPU6050_RA_I2C_SLV4_DI 0x35
#define MPU6050_RA_I2C_MST_STATUS 0x36
#define MPU6050_RA_INT_PIN_CFG 0x37
#define MPU6050_RA_INT_ENABLE 0x38
#define MPU6050_RA_DMP_INT_STATUS 0x39
#define MPU6050_RA_INT_STATUS 0x3A
#define MPU6050_RA_ACCEL_XOUT_H 0x3B
#define MPU6050_RA_ACCEL_XOUT_L 0x3C
#define MPU6050_RA_ACCEL_YOUT_H 0x3D
#define MPU6050_RA_ACCEL_YOUT_L 0x3E
#define MPU6050_RA_ACCEL_ZOUT_H 0x3F
#define MPU6050_RA_ACCEL_ZOUT_L 0x40
#define MPU6050_RA_TEMP_OUT_H 0x41
#define MPU6050_RA_TEMP_OUT_L 0x42
#define MPU6050_RA_GYRO_XOUT_H 0x43
#define MPU6050_RA_GYRO_XOUT_L 0x44
#define MPU6050_RA_GYRO_YOUT_H 0x45
#define MPU6050_RA_GYRO_YOUT_L 0x46
#define MPU6050_RA_GYRO_ZOUT_H 0x47
#define MPU6050_RA_GYRO_ZOUT_L 0x48
#define MPU6050_RA_EXT_SENS_DATA_00 0x49
#define MPU6050_RA_EXT_SENS_DATA_01 0x4A
#define MPU6050_RA_EXT_SENS_DATA_02 0x4B
#define MPU6050_RA_EXT_SENS_DATA_03 0x4C
#define MPU6050_RA_EXT_SENS_DATA_04 0x4D
#define MPU6050_RA_EXT_SENS_DATA_05 0x4E
#define MPU6050_RA_EXT_SENS_DATA_06 0x4F
#define MPU6050_RA_EXT_SENS_DATA_07 0x50
#define MPU6050_RA_EXT_SENS_DATA_08 0x51
#define MPU6050_RA_EXT_SENS_DATA_09 0x52
#define MPU6050_RA_EXT_SENS_DATA_10 0x53
#define MPU6050_RA_EXT_SENS_DATA_11 0x54
#define MPU6050_RA_EXT_SENS_DATA_12 0x55
#define MPU6050_RA_EXT_SENS_DATA_13 0x56
#define MPU6050_RA_EXT_SENS_DATA_14 0x57
#define MPU6050_RA_EXT_SENS_DATA_15 0x58
#define MPU6050_RA_EXT_SENS_DATA_16 0x59
#define MPU6050_RA_EXT_SENS_DATA_17 0x5A
#define MPU6050_RA_EXT_SENS_DATA_18 0x5B
#define MPU6050_RA_EXT_SENS_DATA_19 0x5C
#define MPU6050_RA_EXT_SENS_DATA_20 0x5D
#define MPU6050_RA_EXT_SENS_DATA_21 0x5E
#define MPU6050_RA_EXT_SENS_DATA_22 0x5F
#define MPU6050_RA_EXT_SENS_DATA_23 0x60
#define MPU6050_RA_MOT_DETECT_STATUS 0x61
#define MPU6050_RA_I2C_SLV0_DO 0x63
#define MPU6050_RA_I2C_SLV1_DO 0x64
#define MPU6050_RA_I2C_SLV2_DO 0x65
#define MPU6050_RA_I2C_SLV3_DO 0x66
#define MPU6050_RA_I2C_MST_DELAY_CTRL 0x67
#define MPU6050_RA_SIGNAL_PATH_RESET 0x68
#define MPU6050_RA_MOT_DETECT_CTRL 0x69
#define MPU6050_RA_USER_CTRL 0x6A
#define MPU6050_RA_PWR_MGMT_1 0x6B
#define MPU6050_RA_PWR_MGMT_2 0x6C
#define MPU6050_RA_BANK_SEL 0x6D
#define MPU6050_RA_MEM_START_ADDR 0x6E
#define MPU6050_RA_MEM_R_W 0x6F
#define MPU6050_RA_DMP_CFG_1 0x70
#define MPU6050_RA_DMP_CFG_2 0x71
#define MPU6050_RA_FIFO_COUNTH 0x72
#define MPU6050_RA_FIFO_COUNTL 0x73
#define MPU6050_RA_FIFO_R_W 0x74
#define MPU6050_RA_WHO_AM_I 0x75

#define MPU6050_TC_PWR_MODE_BIT 7
#define MPU6050_TC_OFFSET_BIT 6
#define MPU6050_TC_OFFSET_LENGTH 6
#define MPU6050_TC_OTP_BNK_VLD_BIT 0

#define MPU6050_VDDIO_LEVEL_VLOGIC 0
#define MPU6050_VDDIO_LEVEL_VDD 1

#define MPU6050_CFG_EXT_SYNC_SET_BIT 5
#define MPU6050_CFG_EXT_SYNC_SET_LENGTH 3
#define MPU6050_CFG_DLPF_CFG_BIT 2
#define MPU6050_CFG_DLPF_CFG_LENGTH 3

#define MPU6050_EXT_SYNC_DISABLED 0x0
#define MPU6050_EXT_SYNC_TEMP_OUT_L 0x1
#define MPU6050_EXT_SYNC_GYRO_XOUT_L 0x2
#define MPU6050_EXT_SYNC_GYRO_YOUT_L 0x3
#define MPU6050_EXT_SYNC_GYRO_ZOUT_L 0x4
#define MPU6050_EXT_SYNC_ACCEL_XOUT_L 0x5
#define MPU6050_EXT_SYNC_ACCEL_YOUT_L 0x6
#define MPU6050_EXT_SYNC_ACCEL_ZOUT_L 0x7

#define MPU6050_DLPF_BW_256 0x00
#define MPU6050_DLPF_BW_188 0x01
#define MPU6050_DLPF_BW_98 0x02
#define MPU6050_DLPF_BW_42 0x03
#define MPU6050_DLPF_BW_20 0x04
#define MPU6050_DLPF_BW_10 0x05
#define MPU6050_DLPF_BW_5 0x06

#define MPU6050_GCONFIG_FS_SEL_BIT 4
#define MPU6050_GCONFIG_FS_SEL_LENGTH 2

#define MPU6050_GYRO_FS_250 0x00
#define MPU6050_GYRO_FS_500 0x01
#define MPU6050_GYRO_FS_1000 0x02
#define MPU6050_GYRO_FS_2000 0x03

#define MPU6050_ACONFIG_XA_ST_BIT 7
#define MPU6050_ACONFIG_YA_ST_BIT 6
#define MPU6050_ACONFIG_ZA_ST_BIT 5
#define MPU6050_ACONFIG_AFS_SEL_BIT 4
#define MPU6050_ACONFIG_AFS_SEL_LENGTH 2
#define MPU6050_ACONFIG_ACCEL_HPF_BIT 2
#define MPU6050_ACONFIG_ACCEL_HPF_LENGTH 3

#define MPU6050_ACCEL_FS_2 0x00
#define MPU6050_ACCEL_FS_4 0x01
#define MPU6050_ACCEL_FS_8 0x02
#define MPU6050_ACCEL_FS_16 0x03

#define MPU6050_DHPF_RESET 0x00
#define MPU6050_DHPF_5 0x01
#define MPU6050_DHPF_2P5 0x02
#define MPU6050_DHPF_1P25 0x03
#define MPU6050_DHPF_0P63 0x04
#define MPU6050_DHPF_HOLD 0x07

#define MPU6050_TEMP_FIFO_EN_BIT 7
#define MPU6050_XG_FIFO_EN_BIT 6
#define MPU6050_YG_FIFO_EN_BIT 5
#define MPU6050_ZG_FIFO_EN_BIT 4
#define MPU6050_ACCEL_FIFO_EN_BIT 3
#define MPU6050_SLV2_FIFO_EN_BIT 2
#define MPU6050_SLV1_FIFO_EN_BIT 1
#define MPU6050_SLV0_FIFO_EN_BIT 0

#define MPU6050_MULT_MST_EN_BIT 7
#define MPU6050_WAIT_FOR_ES_BIT 6
#define MPU6050_SLV_3_FIFO_EN_BIT 5
#define MPU6050_I2C_MST_P_NSR_BIT 4
#define MPU6050_I2C_MST_CLK_BIT 3
#define MPU6050_I2C_MST_CLK_LENGTH 4

#define MPU6050_CLOCK_DIV_348 0x0
#define MPU6050_CLOCK_DIV_333 0x1
#define MPU6050_CLOCK_DIV_320 0x2
#define MPU6050_CLOCK_DIV_308 0x3
#define MPU6050_CLOCK_DIV_296 0x4
#define MPU6050_CLOCK_DIV_286 0x5
#define MPU6050_CLOCK_DIV_276 0x6
#define MPU6050_CLOCK_DIV_267 0x7
#define MPU6050_CLOCK_DIV_258 0x8
#define MPU6050_CLOCK_DIV_500 0x9
#define MPU6050_CLOCK_DIV_471 0xA
#define MPU6050_CLOCK_DIV_444 0xB
#define MPU6050_CLOCK_DIV_421 0xC
#define MPU6050_CLOCK_DIV_400 0xD
#define MPU6050_CLOCK_DIV_381 0xE
#define MPU6050_CLOCK_DIV_364 0xF

#define MPU6050_I2C_SLV_RW_BIT 7
#define MPU6050_I2C_SLV_ADDR_BIT 6
#define MPU6050_I2C_SLV_ADDR_LENGTH 7
#define MPU6050_I2C_SLV_EN_BIT 7
#define MPU6050_I2C_SLV_BYTE_SW_BIT 6
#define MPU6050_I2C_SLV_REG_DIS_BIT 5
#define MPU6050_I2C_SLV_GRP_BIT 4
#define MPU6050_I2C_SLV_LEN_BIT 3
#define MPU6050_I2C_SLV_LEN_LENGTH 4

#define MPU6050_I2C_SLV4_RW_BIT 7
#define MPU6050_I2C_SLV4_ADDR_BIT 6
#define MPU6050_I2C_SLV4_ADDR_LENGTH 7
#define MPU6050_I2C_SLV4_EN_BIT 7
#define MPU6050_I2C_SLV4_INT_EN_BIT 6
#define MPU6050_I2C_SLV4_REG_DIS_BIT 5
#define MPU6050_I2C_SLV4_MST_DLY_BIT 4
#define MPU6050_I2C_SLV4_MST_DLY_LENGTH 5

#define MPU6050_MST_PASS_THROUGH_BIT 7
#define MPU6050_MST_I2C_SLV4_DONE_BIT 6
#define MPU6050_MST_I2C_LOST_ARB_BIT 5
#define MPU6050_MST_I2C_SLV4_NACK_BIT 4
#define MPU6050_MST_I2C_SLV3_NACK_BIT 3
#define MPU6050_MST_I2C_SLV2_NACK_BIT 2
#define MPU6050_MST_I2C_SLV1_NACK_BIT 1
#define MPU6050_MST_I2C_SLV0_NACK_BIT 0

#define MPU6050_INTCFG_INT_LEVEL_BIT 7
#define MPU6050_INTCFG_INT_OPEN_BIT 6
#define MPU6050_INTCFG_LATCH_INT_EN_BIT 5
#define MPU6050_INTCFG_INT_RD_CLEAR_BIT 4
#define MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT 3
#define MPU6050_INTCFG_FSYNC_INT_EN_BIT 2
#define MPU6050_INTCFG_I2C_BYPASS_EN_BIT 1
#define MPU6050_INTCFG_CLKOUT_EN_BIT 0

#define MPU6050_INTMODE_ACTIVEHIGH 0x00
#define MPU6050_INTMODE_ACTIVELOW 0x01

#define MPU6050_INTDRV_PUSHPULL 0x00
#define MPU6050_INTDRV_OPENDRAIN 0x01

#define MPU6050_INTLATCH_50USPULSE 0x00
#define MPU6050_INTLATCH_WAITCLEAR 0x01

#define MPU6050_INTCLEAR_STATUSREAD 0x00
#define MPU6050_INTCLEAR_ANYREAD 0x01

#define MPU6050_INTERRUPT_FF_BIT 7
#define MPU6050_INTERRUPT_MOT_BIT 6
#define MPU6050_INTERRUPT_ZMOT_BIT 5
#define MPU6050_INTERRUPT_FIFO_OFLOW_BIT 4
#define MPU6050_INTERRUPT_I2C_MST_INT_BIT 3
#define MPU6050_INTERRUPT_PLL_RDY_INT_BIT 2
#define MPU6050_INTERRUPT_DMP_INT_BIT 1
#define MPU6050_INTERRUPT_DATA_RDY_BIT 0

// TODO: figure out what these actually do
// UMPL source code is not very obivous
#define MPU6050_DMPINT_5_BIT 5
#define MPU6050_DMPINT_4_BIT 4
#define MPU6050_DMPINT_3_BIT 3
#define MPU6050_DMPINT_2_BIT 2
#define MPU6050_DMPINT_1_BIT 1
#define MPU6050_DMPINT_0_BIT 0

#define MPU6050_MOTION_MOT_XNEG_BIT 7
#define MPU6050_MOTION_MOT_XPOS_BIT 6
#define MPU6050_MOTION_MOT_YNEG_BIT 5
#define MPU6050_MOTION_MOT_YPOS_BIT 4
#define MPU6050_MOTION_MOT_ZNEG_BIT 3
#define MPU6050_MOTION_MOT_ZPOS_BIT 2
#define MPU6050_MOTION_MOT_ZRMOT_BIT 0

#define MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT 7
#define MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT 4
#define MPU6050_DELAYCTRL_I2C_SLV3_DLY_EN_BIT 3
#define MPU6050_DELAYCTRL_I2C_SLV2_DLY_EN_BIT 2
#define MPU6050_DELAYCTRL_I2C_SLV1_DLY_EN_BIT 1
#define MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT 0

#define MPU6050_PATHRESET_GYRO_RESET_BIT 2
#define MPU6050_PATHRESET_ACCEL_RESET_BIT 1
#define MPU6050_PATHRESET_TEMP_RESET_BIT 0

#define MPU6050_DETECT_ACCEL_ON_DELAY_BIT 5
#define MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH 2
#define MPU6050_DETECT_FF_COUNT_BIT 3
#define MPU6050_DETECT_FF_COUNT_LENGTH 2
#define MPU6050_DETECT_MOT_COUNT_BIT 1
#define MPU6050_DETECT_MOT_COUNT_LENGTH 2

#define MPU6050_DETECT_DECREMENT_RESET 0x0
#define MPU6050_DETECT_DECREMENT_1 0x1
#define MPU6050_DETECT_DECREMENT_2 0x2
#define MPU6050_DETECT_DECREMENT_4 0x3

#define MPU6050_USERCTRL_DMP_EN_BIT 7
#define MPU6050_USERCTRL_FIFO_EN_BIT 6
#define MPU6050_USERCTRL_I2C_MST_EN_BIT 5
#define MPU6050_USERCTRL_I2C_IF_DIS_BIT 4
#define MPU6050_USERCTRL_DMP_RESET_BIT 3
#define MPU6050_USERCTRL_FIFO_RESET_BIT 2
#define MPU6050_USERCTRL_I2C_MST_RESET_BIT 1
#define MPU6050_USERCTRL_SIG_COND_RESET_BIT 0

#define MPU6050_PWR1_DEVICE_RESET_BIT 7
#define MPU6050_PWR1_SLEEP_BIT 6
#define MPU6050_PWR1_CYCLE_BIT 5
#define MPU6050_PWR1_TEMP_DIS_BIT 3
#define MPU6050_PWR1_CLKSEL_BIT 2
#define MPU6050_PWR1_CLKSEL_LENGTH 3

#define MPU6050_CLOCK_INTERNAL 0x00
#define MPU6050_CLOCK_PLL_XGYRO 0x01
#define MPU6050_CLOCK_PLL_YGYRO 0x02
#define MPU6050_CLOCK_PLL_ZGYRO 0x03
#define MPU6050_CLOCK_PLL_EXT32K 0x04
#define MPU6050_CLOCK_PLL_EXT19M 0x05
#define MPU6050_CLOCK_KEEP_RESET 0x07

#define MPU6050_PWR2_LP_WAKE_CTRL_BIT 7
#define MPU6050_PWR2_LP_WAKE_CTRL_LENGTH 2
#define MPU6050_PWR2_STBY_XA_BIT 5
#define MPU6050_PWR2_STBY_YA_BIT 4
#define MPU6050_PWR2_STBY_ZA_BIT 3
#define MPU6050_PWR2_STBY_XG_BIT 2
#define MPU6050_PWR2_STBY_YG_BIT 1
#define MPU6050_PWR2_STBY_ZG_BIT 0

#define MPU6050_WAKE_FREQ_1P25 0x0
#define MPU6050_WAKE_FREQ_2P5 0x1
#define MPU6050_WAKE_FREQ_5 0x2
#define MPU6050_WAKE_FREQ_10 0x3

#define MPU6050_BANKSEL_PRFTCH_EN_BIT 6
#define MPU6050_BANKSEL_CFG_USER_BANK_BIT 5
#define MPU6050_BANKSEL_MEM_SEL_BIT 4
#define MPU6050_BANKSEL_MEM_SEL_LENGTH 5

#define MPU6050_WHO_AM_I_BIT 6
#define MPU6050_WHO_AM_I_LENGTH 6

#define MPU6050_DMP_MEMORY_BANKS 8
#define MPU6050_DMP_MEMORY_BANK_SIZE 256
#define MPU6050_DMP_MEMORY_CHUNK_SIZE 16

// note: DMP code memory blocks defined at end of header file

class MPU6050 {
public:
MPU6050();
MPU6050(uint8_t address);

void initialize();
bool testConnection();

// AUX_VDDIO register
uint8_t getAuxVDDIOLevel();
void setAuxVDDIOLevel(uint8_t level);

// SMPLRT_DIV register
uint8_t getRate();
void setRate(uint8_t rate);

// CONFIG register
uint8_t getExternalFrameSync();
void setExternalFrameSync(uint8_t sync);
uint8_t getDLPFMode();
void setDLPFMode(uint8_t bandwidth);

// GYRO_CONFIG register
uint8_t getFullScaleGyroRange();
void setFullScaleGyroRange(uint8_t range);

// ACCEL_CONFIG register
bool getAccelXSelfTest();
void setAccelXSelfTest(bool enabled);
bool getAccelYSelfTest();
void setAccelYSelfTest(bool enabled);
bool getAccelZSelfTest();
void setAccelZSelfTest(bool enabled);
uint8_t getFullScaleAccelRange();
void setFullScaleAccelRange(uint8_t range);
uint8_t getDHPFMode();
void setDHPFMode(uint8_t mode);

// FF_THR register
uint8_t getFreefallDetectionThreshold();
void setFreefallDetectionThreshold(uint8_t threshold);

// FF_DUR register
uint8_t getFreefallDetectionDuration();
void setFreefallDetectionDuration(uint8_t duration);

// MOT_THR register
uint8_t getMotionDetectionThreshold();
void setMotionDetectionThreshold(uint8_t threshold);

// MOT_DUR register
uint8_t getMotionDetectionDuration();
void setMotionDetectionDuration(uint8_t duration);

// ZRMOT_THR register
uint8_t getZeroMotionDetectionThreshold();
void setZeroMotionDetectionThreshold(uint8_t threshold);

// ZRMOT_DUR register
uint8_t getZeroMotionDetectionDuration();
void setZeroMotionDetectionDuration(uint8_t duration);

// FIFO_EN register
bool getTempFIFOEnabled();
void setTempFIFOEnabled(bool enabled);
bool getXGyroFIFOEnabled();
void setXGyroFIFOEnabled(bool enabled);
bool getYGyroFIFOEnabled();
void setYGyroFIFOEnabled(bool enabled);
bool getZGyroFIFOEnabled();
void setZGyroFIFOEnabled(bool enabled);
bool getAccelFIFOEnabled();
void setAccelFIFOEnabled(bool enabled);
bool getSlave2FIFOEnabled();
void setSlave2FIFOEnabled(bool enabled);
bool getSlave1FIFOEnabled();
void setSlave1FIFOEnabled(bool enabled);
bool getSlave0FIFOEnabled();
void setSlave0FIFOEnabled(bool enabled);

// I2C_MST_CTRL register
bool getMultiMasterEnabled();
void setMultiMasterEnabled(bool enabled);
bool getWaitForExternalSensorEnabled();
void setWaitForExternalSensorEnabled(bool enabled);
bool getSlave3FIFOEnabled();
void setSlave3FIFOEnabled(bool enabled);
bool getSlaveReadWriteTransitionEnabled();
void setSlaveReadWriteTransitionEnabled(bool enabled);
uint8_t getMasterClockSpeed();
void setMasterClockSpeed(uint8_t speed);

// I2C_SLV* registers (Slave 0-3)
uint8_t getSlaveAddress(uint8_t num);
void setSlaveAddress(uint8_t num, uint8_t address);
uint8_t getSlaveRegister(uint8_t num);
void setSlaveRegister(uint8_t num, uint8_t reg);
bool getSlaveEnabled(uint8_t num);
void setSlaveEnabled(uint8_t num, bool enabled);
bool getSlaveWordByteSwap(uint8_t num);
void setSlaveWordByteSwap(uint8_t num, bool enabled);
bool getSlaveWriteMode(uint8_t num);
void setSlaveWriteMode(uint8_t num, bool mode);
bool getSlaveWordGroupOffset(uint8_t num);
void setSlaveWordGroupOffset(uint8_t num, bool enabled);
uint8_t getSlaveDataLength(uint8_t num);
void setSlaveDataLength(uint8_t num, uint8_t length);

// I2C_SLV* registers (Slave 4)
uint8_t getSlave4Address();
void setSlave4Address(uint8_t address);
uint8_t getSlave4Register();
void setSlave4Register(uint8_t reg);
void setSlave4OutputByte(uint8_t data);
bool getSlave4Enabled();
void setSlave4Enabled(bool enabled);
bool getSlave4InterruptEnabled();
void setSlave4InterruptEnabled(bool enabled);
bool getSlave4WriteMode();
void setSlave4WriteMode(bool mode);
uint8_t getSlave4MasterDelay();
void setSlave4MasterDelay(uint8_t delay);
uint8_t getSlate4InputByte();

// I2C_MST_STATUS register
bool getPassthroughStatus();
bool getSlave4IsDone();
bool getLostArbitration();
bool getSlave4Nack();
bool getSlave3Nack();
bool getSlave2Nack();
bool getSlave1Nack();
bool getSlave0Nack();

// INT_PIN_CFG register
bool getInterruptMode();
void setInterruptMode(bool mode);
bool getInterruptDrive();
void setInterruptDrive(bool drive);
bool getInterruptLatch();
void setInterruptLatch(bool latch);
bool getInterruptLatchClear();
void setInterruptLatchClear(bool clear);
bool getFSyncInterruptLevel();
void setFSyncInterruptLevel(bool level);
bool getFSyncInterruptEnabled();
void setFSyncInterruptEnabled(bool enabled);
bool getI2CBypassEnabled();
void setI2CBypassEnabled(bool enabled);
bool getClockOutputEnabled();
void setClockOutputEnabled(bool enabled);

// INT_ENABLE register
uint8_t getIntEnabled();
void setIntEnabled(uint8_t enabled);
bool getIntFreefallEnabled();
void setIntFreefallEnabled(bool enabled);
bool getIntMotionEnabled();
void setIntMotionEnabled(bool enabled);
bool getIntZeroMotionEnabled();
void setIntZeroMotionEnabled(bool enabled);
bool getIntFIFOBufferOverflowEnabled();
void setIntFIFOBufferOverflowEnabled(bool enabled);
bool getIntI2CMasterEnabled();
void setIntI2CMasterEnabled(bool enabled);
bool getIntDataReadyEnabled();
void setIntDataReadyEnabled(bool enabled);

// INT_STATUS register
uint8_t getIntStatus();
bool getIntFreefallStatus();
bool getIntMotionStatus();
bool getIntZeroMotionStatus();
bool getIntFIFOBufferOverflowStatus();
bool getIntI2CMasterStatus();
bool getIntDataReadyStatus();

// ACCEL_*OUT_* registers
void getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz);
void getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz);
void getAcceleration(int16_t* x, int16_t* y, int16_t* z);
int16_t getAccelerationX();
int16_t getAccelerationY();
int16_t getAccelerationZ();

// TEMP_OUT_* registers
int16_t getTemperature();

// GYRO_*OUT_* registers
void getRotation(int16_t* x, int16_t* y, int16_t* z);
int16_t getRotationX();
int16_t getRotationY();
int16_t getRotationZ();

// EXT_SENS_DATA_* registers
uint8_t getExternalSensorByte(int position);
uint16_t getExternalSensorWord(int position);
uint32_t getExternalSensorDWord(int position);

// MOT_DETECT_STATUS register
bool getXNegMotionDetected();
bool getXPosMotionDetected();
bool getYNegMotionDetected();
bool getYPosMotionDetected();
bool getZNegMotionDetected();
bool getZPosMotionDetected();
bool getZeroMotionDetected();

// I2C_SLV*_DO register
void setSlaveOutputByte(uint8_t num, uint8_t data);

// I2C_MST_DELAY_CTRL register
bool getExternalShadowDelayEnabled();
void setExternalShadowDelayEnabled(bool enabled);
bool getSlaveDelayEnabled(uint8_t num);
void setSlaveDelayEnabled(uint8_t num, bool enabled);

// SIGNAL_PATH_RESET register
void resetGyroscopePath();
void resetAccelerometerPath();
void resetTemperaturePath();

// MOT_DETECT_CTRL register
uint8_t getAccelerometerPowerOnDelay();
void setAccelerometerPowerOnDelay(uint8_t delay);
uint8_t getFreefallDetectionCounterDecrement();
void setFreefallDetectionCounterDecrement(uint8_t decrement);
uint8_t getMotionDetectionCounterDecrement();
void setMotionDetectionCounterDecrement(uint8_t decrement);

// USER_CTRL register
bool getFIFOEnabled();
void setFIFOEnabled(bool enabled);
bool getI2CMasterModeEnabled();
void setI2CMasterModeEnabled(bool enabled);
void switchSPIEnabled(bool enabled);
void resetFIFO();
void resetI2CMaster();
void resetSensors();

// PWR_MGMT_1 register
void reset();
bool getSleepEnabled();
void setSleepEnabled(bool enabled);
bool getWakeCycleEnabled();
void setWakeCycleEnabled(bool enabled);
bool getTempSensorEnabled();
void setTempSensorEnabled(bool enabled);
uint8_t getClockSource();
void setClockSource(uint8_t source);

// PWR_MGMT_2 register
uint8_t getWakeFrequency();
void setWakeFrequency(uint8_t frequency);
bool getStandbyXAccelEnabled();
void setStandbyXAccelEnabled(bool enabled);
bool getStandbyYAccelEnabled();
void setStandbyYAccelEnabled(bool enabled);
bool getStandbyZAccelEnabled();
void setStandbyZAccelEnabled(bool enabled);
bool getStandbyXGyroEnabled();
void setStandbyXGyroEnabled(bool enabled);
bool getStandbyYGyroEnabled();
void setStandbyYGyroEnabled(bool enabled);
bool getStandbyZGyroEnabled();
void setStandbyZGyroEnabled(bool enabled);

// FIFO_COUNT_* registers
uint16_t getFIFOCount();

// FIFO_R_W register
uint8_t getFIFOByte();
void setFIFOByte(uint8_t data);
void getFIFOBytes(uint8_t *data, uint8_t length);

// WHO_AM_I register
uint8_t getDeviceID();
void setDeviceID(uint8_t id);

// ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========

// XG_OFFS_TC register
uint8_t getOTPBankValid();
void setOTPBankValid(bool enabled);
int8_t getXGyroOffsetTC();
void setXGyroOffsetTC(int8_t offset);

// YG_OFFS_TC register
int8_t getYGyroOffsetTC();
void setYGyroOffsetTC(int8_t offset);

// ZG_OFFS_TC register
int8_t getZGyroOffsetTC();
void setZGyroOffsetTC(int8_t offset);

// X_FINE_GAIN register
int8_t getXFineGain();
void setXFineGain(int8_t gain);

// Y_FINE_GAIN register
int8_t getYFineGain();
void setYFineGain(int8_t gain);

// Z_FINE_GAIN register
int8_t getZFineGain();
void setZFineGain(int8_t gain);

// XA_OFFS_* registers
int16_t getXAccelOffset();
void setXAccelOffset(int16_t offset);

// YA_OFFS_* register
int16_t getYAccelOffset();
void setYAccelOffset(int16_t offset);

// ZA_OFFS_* register
int16_t getZAccelOffset();
void setZAccelOffset(int16_t offset);

// XG_OFFS_USR* registers
int16_t getXGyroOffset();
void setXGyroOffset(int16_t offset);

// YG_OFFS_USR* register
int16_t getYGyroOffset();
void setYGyroOffset(int16_t offset);

// ZG_OFFS_USR* register
int16_t getZGyroOffset();
void setZGyroOffset(int16_t offset);

// INT_ENABLE register (DMP functions)
bool getIntPLLReadyEnabled();
void setIntPLLReadyEnabled(bool enabled);
bool getIntDMPEnabled();
void setIntDMPEnabled(bool enabled);

// DMP_INT_STATUS
bool getDMPInt5Status();
bool getDMPInt4Status();
bool getDMPInt3Status();
bool getDMPInt2Status();
bool getDMPInt1Status();
bool getDMPInt0Status();

// INT_STATUS register (DMP functions)
bool getIntPLLReadyStatus();
bool getIntDMPStatus();

// USER_CTRL register (DMP functions)
bool getDMPEnabled();
void setDMPEnabled(bool enabled);
void resetDMP();

// BANK_SEL register
void setMemoryBank(uint8_t bank, bool prefetchEnabled=false, bool userBank=false);

// MEM_START_ADDR register
void setMemoryStartAddress(uint8_t address);

// MEM_R_W register
uint8_t readMemoryByte();
void writeMemoryByte(uint8_t data);
void readMemoryBlock(uint8_t *data, uint16_t dataSize, uint8_t bank=0, uint8_t address=0);
bool writeMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank=0, uint8_t address=0, bool verify=true, bool useProgMem=false);
bool writeProgMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank=0, uint8_t address=0, bool verify=true);

bool writeDMPConfigurationSet(const uint8_t *data, uint16_t dataSize, bool useProgMem=false);
bool writeProgDMPConfigurationSet(const uint8_t *data, uint16_t dataSize);

// DMP_CFG_1 register
uint8_t getDMPConfig1();
void setDMPConfig1(uint8_t config);

// DMP_CFG_2 register
uint8_t getDMPConfig2();
void setDMPConfig2(uint8_t config);

// special methods for MotionApps 2.0 implementation
#ifdef MPU6050_INCLUDE_DMP_MOTIONAPPS20
uint8_t *dmpPacketBuffer;
uint16_t dmpPacketSize;

uint8_t dmpInitialize();
bool dmpPacketAvailable();

uint8_t dmpSetFIFORate(uint8_t fifoRate);
uint8_t dmpGetFIFORate();
uint8_t dmpGetSampleStepSizeMS();
uint8_t dmpGetSampleFrequency();
int32_t dmpDecodeTemperature(int8_t tempReg);

// Register callbacks after a packet of FIFO data is processed
//uint8_t dmpRegisterFIFORateProcess(inv_obj_func func, int16_t priority);
//uint8_t dmpUnregisterFIFORateProcess(inv_obj_func func);
uint8_t dmpRunFIFORateProcesses();

// Setup FIFO for various output
uint8_t dmpSendQuaternion(uint_fast16_t accuracy);
uint8_t dmpSendGyro(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendAccel(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendLinearAccel(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendLinearAccelInWorld(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendControlData(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendSensorData(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendExternalSensorData(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendGravity(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendPacketNumber(uint_fast16_t accuracy);
uint8_t dmpSendQuantizedAccel(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendEIS(uint_fast16_t elements, uint_fast16_t accuracy);

// Get Fixed Point data from FIFO
uint8_t dmpGetAccel(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetAccel(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetAccel(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpGetQuaternion(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetQuaternion(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetQuaternion(Quaternion *q, const uint8_t* packet=0);
uint8_t dmpGet6AxisQuaternion(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGet6AxisQuaternion(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGet6AxisQuaternion(Quaternion *q, const uint8_t* packet=0);
uint8_t dmpGetRelativeQuaternion(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetRelativeQuaternion(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetRelativeQuaternion(Quaternion *data, const uint8_t* packet=0);
uint8_t dmpGetGyro(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetGyro(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetGyro(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpSetLinearAccelFilterCoefficient(float coef);
uint8_t dmpGetLinearAccel(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetLinearAccel(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetLinearAccel(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpGetLinearAccel(VectorInt16 *v, VectorInt16 *vRaw, VectorFloat *gravity);
uint8_t dmpGetLinearAccelInWorld(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetLinearAccelInWorld(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetLinearAccelInWorld(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpGetLinearAccelInWorld(VectorInt16 *v, VectorInt16 *vReal, Quaternion *q);
uint8_t dmpGetGyroAndAccelSensor(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetGyroAndAccelSensor(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetGyroAndAccelSensor(VectorInt16 *g, VectorInt16 *a, const uint8_t* packet=0);
uint8_t dmpGetGyroSensor(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetGyroSensor(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetGyroSensor(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpGetControlData(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetTemperature(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetGravity(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetGravity(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetGravity(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpGetGravity(VectorFloat *v, Quaternion *q);
uint8_t dmpGetUnquantizedAccel(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetUnquantizedAccel(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetUnquantizedAccel(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpGetQuantizedAccel(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetQuantizedAccel(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetQuantizedAccel(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpGetExternalSensorData(int32_t *data, uint16_t size, const uint8_t* packet=0);
uint8_t dmpGetEIS(int32_t *data, const uint8_t* packet=0);

uint8_t dmpGetEuler(float *data, Quaternion *q);
uint8_t dmpGetYawPitchRoll(float *data, Quaternion *q, VectorFloat *gravity);

// Get Floating Point data from FIFO
uint8_t dmpGetAccelFloat(float *data, const uint8_t* packet=0);
uint8_t dmpGetQuaternionFloat(float *data, const uint8_t* packet=0);

uint8_t dmpProcessFIFOPacket(const unsigned char *dmpData);
uint8_t dmpReadAndProcessFIFOPacket(uint8_t numPackets, uint8_t *processed=NULL);

uint8_t dmpSetFIFOProcessedCallback(void (*func) (void));

uint8_t dmpInitFIFOParam();
uint8_t dmpCloseFIFO();
uint8_t dmpSetGyroDataSource(uint8_t source);
uint8_t dmpDecodeQuantizedAccel();
uint32_t dmpGetGyroSumOfSquare();
uint32_t dmpGetAccelSumOfSquare();
void dmpOverrideQuaternion(long *q);
uint16_t dmpGetFIFOPacketSize();
#endif

// special methods for MotionApps 4.1 implementation
#ifdef MPU6050_INCLUDE_DMP_MOTIONAPPS41
uint8_t *dmpPacketBuffer;
uint16_t dmpPacketSize;

uint8_t dmpInitialize();
bool dmpPacketAvailable();

uint8_t dmpSetFIFORate(uint8_t fifoRate);
uint8_t dmpGetFIFORate();
uint8_t dmpGetSampleStepSizeMS();
uint8_t dmpGetSampleFrequency();
int32_t dmpDecodeTemperature(int8_t tempReg);

// Register callbacks after a packet of FIFO data is processed
//uint8_t dmpRegisterFIFORateProcess(inv_obj_func func, int16_t priority);
//uint8_t dmpUnregisterFIFORateProcess(inv_obj_func func);
uint8_t dmpRunFIFORateProcesses();

// Setup FIFO for various output
uint8_t dmpSendQuaternion(uint_fast16_t accuracy);
uint8_t dmpSendGyro(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendAccel(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendLinearAccel(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendLinearAccelInWorld(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendControlData(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendSensorData(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendExternalSensorData(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendGravity(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendPacketNumber(uint_fast16_t accuracy);
uint8_t dmpSendQuantizedAccel(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendEIS(uint_fast16_t elements, uint_fast16_t accuracy);

// Get Fixed Point data from FIFO
uint8_t dmpGetAccel(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetAccel(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetAccel(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpGetQuaternion(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetQuaternion(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetQuaternion(Quaternion *q, const uint8_t* packet=0);
uint8_t dmpGet6AxisQuaternion(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGet6AxisQuaternion(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGet6AxisQuaternion(Quaternion *q, const uint8_t* packet=0);
uint8_t dmpGetRelativeQuaternion(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetRelativeQuaternion(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetRelativeQuaternion(Quaternion *data, const uint8_t* packet=0);
uint8_t dmpGetGyro(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetGyro(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetGyro(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpGetMag(int16_t *data, const uint8_t* packet=0);
uint8_t dmpSetLinearAccelFilterCoefficient(float coef);
uint8_t dmpGetLinearAccel(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetLinearAccel(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetLinearAccel(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpGetLinearAccel(VectorInt16 *v, VectorInt16 *vRaw, VectorFloat *gravity);
uint8_t dmpGetLinearAccelInWorld(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetLinearAccelInWorld(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetLinearAccelInWorld(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpGetLinearAccelInWorld(VectorInt16 *v, VectorInt16 *vReal, Quaternion *q);
uint8_t dmpGetGyroAndAccelSensor(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetGyroAndAccelSensor(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetGyroAndAccelSensor(VectorInt16 *g, VectorInt16 *a, const uint8_t* packet=0);
uint8_t dmpGetGyroSensor(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetGyroSensor(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetGyroSensor(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpGetControlData(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetTemperature(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetGravity(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetGravity(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetGravity(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpGetGravity(VectorFloat *v, Quaternion *q);
uint8_t dmpGetUnquantizedAccel(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetUnquantizedAccel(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetUnquantizedAccel(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpGetQuantizedAccel(int32_t *data, const uint8_t* packet=0);
uint8_t dmpGetQuantizedAccel(int16_t *data, const uint8_t* packet=0);
uint8_t dmpGetQuantizedAccel(VectorInt16 *v, const uint8_t* packet=0);
uint8_t dmpGetExternalSensorData(int32_t *data, uint16_t size, const uint8_t* packet=0);
uint8_t dmpGetEIS(int32_t *data, const uint8_t* packet=0);

uint8_t dmpGetEuler(float *data, Quaternion *q);
uint8_t dmpGetYawPitchRoll(float *data, Quaternion *q, VectorFloat *gravity);

// Get Floating Point data from FIFO
uint8_t dmpGetAccelFloat(float *data, const uint8_t* packet=0);
uint8_t dmpGetQuaternionFloat(float *data, const uint8_t* packet=0);

uint8_t dmpProcessFIFOPacket(const unsigned char *dmpData);
uint8_t dmpReadAndProcessFIFOPacket(uint8_t numPackets, uint8_t *processed=NULL);

uint8_t dmpSetFIFOProcessedCallback(void (*func) (void));

uint8_t dmpInitFIFOParam();
uint8_t dmpCloseFIFO();
uint8_t dmpSetGyroDataSource(uint8_t source);
uint8_t dmpDecodeQuantizedAccel();
uint32_t dmpGetGyroSumOfSquare();
uint32_t dmpGetAccelSumOfSquare();
void dmpOverrideQuaternion(long *q);
uint16_t dmpGetFIFOPacketSize();
#endif

private:
uint8_t devAddr;
uint8_t buffer[14];
};

#endif /* _MPU6050_H_ */

[/sourcecode]

MPU6050.cpp

[sourcecode language=”c”]
// I2Cdev library collection – MPU6050 I2C device class
// Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
// 8/24/2011 by Jeff Rowberg <ten.grebwornull@ffej>
// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
//
// Changelog:
// … – ongoing debug release

// NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE
// DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
// YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.

/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/

#include "MPU6050.h"

/** Default constructor, uses default I2C address.
* @see MPU6050_DEFAULT_ADDRESS
*/
MPU6050::MPU6050() {
devAddr = MPU6050_DEFAULT_ADDRESS;
}

/** Specific address constructor.
* @param address I2C address
* @see MPU6050_DEFAULT_ADDRESS
* @see MPU6050_ADDRESS_AD0_LOW
* @see MPU6050_ADDRESS_AD0_HIGH
*/
MPU6050::MPU6050(uint8_t address) {
devAddr = address;
}

/** Power on and prepare for general usage.
* This will activate the device and take it out of sleep mode (which must be done
* after start-up). This function also sets both the accelerometer and the gyroscope
* to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets
* the clock source to use the X Gyro for reference, which is slightly better than
* the default internal clock source.
*/
void MPU6050::initialize() {
setClockSource(MPU6050_CLOCK_PLL_XGYRO);
setFullScaleGyroRange(MPU6050_GYRO_FS_250);
setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
setSleepEnabled(false); // thanks to Jack Elston for pointing this one out!
}

/** Verify the I2C connection.
* Make sure the device is connected and responds as expected.
* @return True if connection is valid, false otherwise
*/
bool MPU6050::testConnection() {
return getDeviceID() == 0x34;
}

// AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC)

/** Get the auxiliary I2C supply voltage level.
* When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
* 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
* the MPU-6000, which does not have a VLOGIC pin.
* @return I2C supply voltage level (0=VLOGIC, 1=VDD)
*/
uint8_t MPU6050::getAuxVDDIOLevel() {
I2Cdev::readBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, buffer);
return buffer[0];
}
/** Set the auxiliary I2C supply voltage level.
* When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
* 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
* the MPU-6000, which does not have a VLOGIC pin.
* @param level I2C supply voltage level (0=VLOGIC, 1=VDD)
*/
void MPU6050::setAuxVDDIOLevel(uint8_t level) {
I2Cdev::writeBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, level);
}

// SMPLRT_DIV register

/** Get gyroscope output rate divider.
* The sensor register output, FIFO output, DMP sampling, Motion detection, Zero
* Motion detection, and Free Fall detection are all based on the Sample Rate.
* The Sample Rate is generated by dividing the gyroscope output rate by
* SMPLRT_DIV:
*
* Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)
*
* where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or
* 7), and 1kHz when the DLPF is enabled (see Register 26).
*
* Note: The accelerometer output rate is 1kHz. This means that for a Sample
* Rate greater than 1kHz, the same accelerometer sample may be output to the
* FIFO, DMP, and sensor registers more than once.
*
* For a diagram of the gyroscope and accelerometer signal paths, see Section 8
* of the MPU-6000/MPU-6050 Product Specification document.
*
* @return Current sample rate
* @see MPU6050_RA_SMPLRT_DIV
*/
uint8_t MPU6050::getRate() {
I2Cdev::readByte(devAddr, MPU6050_RA_SMPLRT_DIV, buffer);
return buffer[0];
}
/** Set gyroscope sample rate divider.
* @param rate New sample rate divider
* @see getRate()
* @see MPU6050_RA_SMPLRT_DIV
*/
void MPU6050::setRate(uint8_t rate) {
I2Cdev::writeByte(devAddr, MPU6050_RA_SMPLRT_DIV, rate);
}

// CONFIG register

/** Get external FSYNC configuration.
* Configures the external Frame Synchronization (FSYNC) pin sampling. An
* external signal connected to the FSYNC pin can be sampled by configuring
* EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short
* strobes may be captured. The latched FSYNC signal will be sampled at the
* Sampling Rate, as defined in register 25. After sampling, the latch will
* reset to the current FSYNC signal state.
*
* The sampled value will be reported in place of the least significant bit in
* a sensor data register determined by the value of EXT_SYNC_SET according to
* the following table.
*
* <pre>
* EXT_SYNC_SET | FSYNC Bit Location
* ————-+——————-
* 0 | Input disabled
* 1 | TEMP_OUT_L[0]
* 2 | GYRO_XOUT_L[0]
* 3 | GYRO_YOUT_L[0]
* 4 | GYRO_ZOUT_L[0]
* 5 | ACCEL_XOUT_L[0]
* 6 | ACCEL_YOUT_L[0]
* 7 | ACCEL_ZOUT_L[0]
* </pre>
*
* @return FSYNC configuration value
*/
uint8_t MPU6050::getExternalFrameSync() {
I2Cdev::readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, buffer);
return buffer[0];
}
/** Set external FSYNC configuration.
* @see getExternalFrameSync()
* @see MPU6050_RA_CONFIG
* @param sync New FSYNC configuration value
*/
void MPU6050::setExternalFrameSync(uint8_t sync) {
I2Cdev::writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, sync);
}
/** Get digital low-pass filter configuration.
* The DLPF_CFG parameter sets the digital low pass filter configuration. It
* also determines the internal sampling rate used by the device as shown in
* the table below.
*
* Note: The accelerometer output rate is 1kHz. This means that for a Sample
* Rate greater than 1kHz, the same accelerometer sample may be output to the
* FIFO, DMP, and sensor registers more than once.
*
* <pre>
* | ACCELEROMETER | GYROSCOPE
* DLPF_CFG | Bandwidth | Delay | Bandwidth | Delay | Sample Rate
* ———+———–+——–+———–+——–+————-
* 0 | 260Hz | 0ms | 256Hz | 0.98ms | 8kHz
* 1 | 184Hz | 2.0ms | 188Hz | 1.9ms | 1kHz
* 2 | 94Hz | 3.0ms | 98Hz | 2.8ms | 1kHz
* 3 | 44Hz | 4.9ms | 42Hz | 4.8ms | 1kHz
* 4 | 21Hz | 8.5ms | 20Hz | 8.3ms | 1kHz
* 5 | 10Hz | 13.8ms | 10Hz | 13.4ms | 1kHz
* 6 | 5Hz | 19.0ms | 5Hz | 18.6ms | 1kHz
* 7 | — Reserved — | — Reserved — | Reserved
* </pre>
*
* @return DLFP configuration
* @see MPU6050_RA_CONFIG
* @see MPU6050_CFG_DLPF_CFG_BIT
* @see MPU6050_CFG_DLPF_CFG_LENGTH
*/
uint8_t MPU6050::getDLPFMode() {
I2Cdev::readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, buffer);
return buffer[0];
}
/** Set digital low-pass filter configuration.
* @param mode New DLFP configuration setting
* @see getDLPFBandwidth()
* @see MPU6050_DLPF_BW_256
* @see MPU6050_RA_CONFIG
* @see MPU6050_CFG_DLPF_CFG_BIT
* @see MPU6050_CFG_DLPF_CFG_LENGTH
*/
void MPU6050::setDLPFMode(uint8_t mode) {
I2Cdev::writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, mode);
}

// GYRO_CONFIG register

/** Get full-scale gyroscope range.
* The FS_SEL parameter allows setting the full-scale range of the gyro sensors,
* as described in the table below.
*
* <pre>
* 0 = +/- 250 degrees/sec
* 1 = +/- 500 degrees/sec
* 2 = +/- 1000 degrees/sec
* 3 = +/- 2000 degrees/sec
* </pre>
*
* @return Current full-scale gyroscope range setting
* @see MPU6050_GYRO_FS_250
* @see MPU6050_RA_GYRO_CONFIG
* @see MPU6050_GCONFIG_FS_SEL_BIT
* @see MPU6050_GCONFIG_FS_SEL_LENGTH
*/
uint8_t MPU6050::getFullScaleGyroRange() {
I2Cdev::readBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, buffer);
return buffer[0];
}
/** Set full-scale gyroscope range.
* @param range New full-scale gyroscope range value
* @see getFullScaleRange()
* @see MPU6050_GYRO_FS_250
* @see MPU6050_RA_GYRO_CONFIG
* @see MPU6050_GCONFIG_FS_SEL_BIT
* @see MPU6050_GCONFIG_FS_SEL_LENGTH
*/
void MPU6050::setFullScaleGyroRange(uint8_t range) {
I2Cdev::writeBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range);
}

// ACCEL_CONFIG register

/** Get self-test enabled setting for accelerometer X axis.
* @return Self-test enabled value
* @see MPU6050_RA_ACCEL_CONFIG
*/
bool MPU6050::getAccelXSelfTest() {
I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, buffer);
return buffer[0];
}
/** Get self-test enabled setting for accelerometer X axis.
* @param enabled Self-test enabled value
* @see MPU6050_RA_ACCEL_CONFIG
*/
void MPU6050::setAccelXSelfTest(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, enabled);
}
/** Get self-test enabled value for accelerometer Y axis.
* @return Self-test enabled value
* @see MPU6050_RA_ACCEL_CONFIG
*/
bool MPU6050::getAccelYSelfTest() {
I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, buffer);
return buffer[0];
}
/** Get self-test enabled value for accelerometer Y axis.
* @param enabled Self-test enabled value
* @see MPU6050_RA_ACCEL_CONFIG
*/
void MPU6050::setAccelYSelfTest(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, enabled);
}
/** Get self-test enabled value for accelerometer Z axis.
* @return Self-test enabled value
* @see MPU6050_RA_ACCEL_CONFIG
*/
bool MPU6050::getAccelZSelfTest() {
I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, buffer);
return buffer[0];
}
/** Set self-test enabled value for accelerometer Z axis.
* @param enabled Self-test enabled value
* @see MPU6050_RA_ACCEL_CONFIG
*/
void MPU6050::setAccelZSelfTest(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, enabled);
}
/** Get full-scale accelerometer range.
* The FS_SEL parameter allows setting the full-scale range of the accelerometer
* sensors, as described in the table below.
*
* <pre>
* 0 = +/- 2g
* 1 = +/- 4g
* 2 = +/- 8g
* 3 = +/- 16g
* </pre>
*
* @return Current full-scale accelerometer range setting
* @see MPU6050_ACCEL_FS_2
* @see MPU6050_RA_ACCEL_CONFIG
* @see MPU6050_ACONFIG_AFS_SEL_BIT
* @see MPU6050_ACONFIG_AFS_SEL_LENGTH
*/
uint8_t MPU6050::getFullScaleAccelRange() {
I2Cdev::readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, buffer);
return buffer[0];
}
/** Set full-scale accelerometer range.
* @param range New full-scale accelerometer range setting
* @see getFullScaleAccelRange()
*/
void MPU6050::setFullScaleAccelRange(uint8_t range) {
I2Cdev::writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range);
}
/** Get the high-pass filter configuration.
* The DHPF is a filter module in the path leading to motion detectors (Free
* Fall, Motion threshold, and Zero Motion). The high pass filter output is not
* available to the data registers (see Figure in Section 8 of the MPU-6000/
* MPU-6050 Product Specification document).
*
* The high pass filter has three modes:
*
* <pre>
* Reset: The filter output settles to zero within one sample. This
* effectively disables the high pass filter. This mode may be toggled
* to quickly settle the filter.
*
* On: The high pass filter will pass signals above the cut off frequency.
*
* Hold: When triggered, the filter holds the present sample. The filter
* output will be the difference between the input sample and the held
* sample.
* </pre>
*
* <pre>
* ACCEL_HPF | Filter Mode | Cut-off Frequency
* ———-+————-+——————
* 0 | Reset | None
* 1 | On | 5Hz
* 2 | On | 2.5Hz
* 3 | On | 1.25Hz
* 4 | On | 0.63Hz
* 7 | Hold | None
* </pre>
*
* @return Current high-pass filter configuration
* @see MPU6050_DHPF_RESET
* @see MPU6050_RA_ACCEL_CONFIG
*/
uint8_t MPU6050::getDHPFMode() {
I2Cdev::readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, buffer);
return buffer[0];
}
/** Set the high-pass filter configuration.
* @param bandwidth New high-pass filter configuration
* @see setDHPFMode()
* @see MPU6050_DHPF_RESET
* @see MPU6050_RA_ACCEL_CONFIG
*/
void MPU6050::setDHPFMode(uint8_t bandwidth) {
I2Cdev::writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, bandwidth);
}

// FF_THR register

/** Get free-fall event acceleration threshold.
* This register configures the detection threshold for Free Fall event
* detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the
* absolute value of the accelerometer measurements for the three axes are each
* less than the detection threshold. This condition increments the Free Fall
* duration counter (Register 30). The Free Fall interrupt is triggered when the
* Free Fall duration counter reaches the time specified in FF_DUR.
*
* For more details on the Free Fall detection interrupt, see Section 8.2 of the
* MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
* 58 of this document.
*
* @return Current free-fall acceleration threshold value (LSB = 2mg)
* @see MPU6050_RA_FF_THR
*/
uint8_t MPU6050::getFreefallDetectionThreshold() {
I2Cdev::readByte(devAddr, MPU6050_RA_FF_THR, buffer);
return buffer[0];
}
/** Get free-fall event acceleration threshold.
* @param threshold New free-fall acceleration threshold value (LSB = 2mg)
* @see getFreefallDetectionThreshold()
* @see MPU6050_RA_FF_THR
*/
void MPU6050::setFreefallDetectionThreshold(uint8_t threshold) {
I2Cdev::writeByte(devAddr, MPU6050_RA_FF_THR, threshold);
}

// FF_DUR register

/** Get free-fall event duration threshold.
* This register configures the duration counter threshold for Free Fall event
* detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit
* of 1 LSB = 1 ms.
*
* The Free Fall duration counter increments while the absolute value of the
* accelerometer measurements are each less than the detection threshold
* (Register 29). The Free Fall interrupt is triggered when the Free Fall
* duration counter reaches the time specified in this register.
*
* For more details on the Free Fall detection interrupt, see Section 8.2 of
* the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
* and 58 of this document.
*
* @return Current free-fall duration threshold value (LSB = 1ms)
* @see MPU6050_RA_FF_DUR
*/
uint8_t MPU6050::getFreefallDetectionDuration() {
I2Cdev::readByte(devAddr, MPU6050_RA_FF_DUR, buffer);
return buffer[0];
}
/** Get free-fall event duration threshold.
* @param duration New free-fall duration threshold value (LSB = 1ms)
* @see getFreefallDetectionDuration()
* @see MPU6050_RA_FF_DUR
*/
void MPU6050::setFreefallDetectionDuration(uint8_t duration) {
I2Cdev::writeByte(devAddr, MPU6050_RA_FF_DUR, duration);
}

// MOT_THR register

/** Get motion detection event acceleration threshold.
* This register configures the detection threshold for Motion interrupt
* generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the
* absolute value of any of the accelerometer measurements exceeds this Motion
* detection threshold. This condition increments the Motion detection duration
* counter (Register 32). The Motion detection interrupt is triggered when the
* Motion Detection counter reaches the time count specified in MOT_DUR
* (Register 32).
*
* The Motion interrupt will indicate the axis and polarity of detected motion
* in MOT_DETECT_STATUS (Register 97).
*
* For more details on the Motion detection interrupt, see Section 8.3 of the
* MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
* 58 of this document.
*
* @return Current motion detection acceleration threshold value (LSB = 2mg)
* @see MPU6050_RA_MOT_THR
*/
uint8_t MPU6050::getMotionDetectionThreshold() {
I2Cdev::readByte(devAddr, MPU6050_RA_MOT_THR, buffer);
return buffer[0];
}
/** Set free-fall event acceleration threshold.
* @param threshold New motion detection acceleration threshold value (LSB = 2mg)
* @see getMotionDetectionThreshold()
* @see MPU6050_RA_MOT_THR
*/
void MPU6050::setMotionDetectionThreshold(uint8_t threshold) {
I2Cdev::writeByte(devAddr, MPU6050_RA_MOT_THR, threshold);
}

// MOT_DUR register

/** Get motion detection event duration threshold.
* This register configures the duration counter threshold for Motion interrupt
* generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit
* of 1LSB = 1ms. The Motion detection duration counter increments when the
* absolute value of any of the accelerometer measurements exceeds the Motion
* detection threshold (Register 31). The Motion detection interrupt is
* triggered when the Motion detection counter reaches the time count specified
* in this register.
*
* For more details on the Motion detection interrupt, see Section 8.3 of the
* MPU-6000/MPU-6050 Product Specification document.
*
* @return Current motion detection duration threshold value (LSB = 1ms)
* @see MPU6050_RA_MOT_DUR
*/
uint8_t MPU6050::getMotionDetectionDuration() {
I2Cdev::readByte(devAddr, MPU6050_RA_MOT_DUR, buffer);
return buffer[0];
}
/** Set motion detection event duration threshold.
* @param duration New motion detection duration threshold value (LSB = 1ms)
* @see getMotionDetectionDuration()
* @see MPU6050_RA_MOT_DUR
*/
void MPU6050::setMotionDetectionDuration(uint8_t duration) {
I2Cdev::writeByte(devAddr, MPU6050_RA_MOT_DUR, duration);
}

// ZRMOT_THR register

/** Get zero motion detection event acceleration threshold.
* This register configures the detection threshold for Zero Motion interrupt
* generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when
* the absolute value of the accelerometer measurements for the 3 axes are each
* less than the detection threshold. This condition increments the Zero Motion
* duration counter (Register 34). The Zero Motion interrupt is triggered when
* the Zero Motion duration counter reaches the time count specified in
* ZRMOT_DUR (Register 34).
*
* Unlike Free Fall or Motion detection, Zero Motion detection triggers an
* interrupt both when Zero Motion is first detected and when Zero Motion is no
* longer detected.
*
* When a zero motion event is detected, a Zero Motion Status will be indicated
* in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion
* condition is detected, the status bit is set to 1. When a zero-motion-to-
* motion condition is detected, the status bit is set to 0.
*
* For more details on the Zero Motion detection interrupt, see Section 8.4 of
* the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
* and 58 of this document.
*
* @return Current zero motion detection acceleration threshold value (LSB = 2mg)
* @see MPU6050_RA_ZRMOT_THR
*/
uint8_t MPU6050::getZeroMotionDetectionThreshold() {
I2Cdev::readByte(devAddr, MPU6050_RA_ZRMOT_THR, buffer);
return buffer[0];
}
/** Set zero motion detection event acceleration threshold.
* @param threshold New zero motion detection acceleration threshold value (LSB = 2mg)
* @see getZeroMotionDetectionThreshold()
* @see MPU6050_RA_ZRMOT_THR
*/
void MPU6050::setZeroMotionDetectionThreshold(uint8_t threshold) {
I2Cdev::writeByte(devAddr, MPU6050_RA_ZRMOT_THR, threshold);
}

// ZRMOT_DUR register

/** Get zero motion detection event duration threshold.
* This register configures the duration counter threshold for Zero Motion
* interrupt generation. The duration counter ticks at 16 Hz, therefore
* ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter
* increments while the absolute value of the accelerometer measurements are
* each less than the detection threshold (Register 33). The Zero Motion
* interrupt is triggered when the Zero Motion duration counter reaches the time
* count specified in this register.
*
* For more details on the Zero Motion detection interrupt, see Section 8.4 of
* the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56
* and 58 of this document.
*
* @return Current zero motion detection duration threshold value (LSB = 64ms)
* @see MPU6050_RA_ZRMOT_DUR
*/
uint8_t MPU6050::getZeroMotionDetectionDuration() {
I2Cdev::readByte(devAddr, MPU6050_RA_ZRMOT_DUR, buffer);
return buffer[0];
}
/** Set zero motion detection event duration threshold.
* @param duration New zero motion detection duration threshold value (LSB = 1ms)
* @see getZeroMotionDetectionDuration()
* @see MPU6050_RA_ZRMOT_DUR
*/
void MPU6050::setZeroMotionDetectionDuration(uint8_t duration) {
I2Cdev::writeByte(devAddr, MPU6050_RA_ZRMOT_DUR, duration);
}

// FIFO_EN register

/** Get temperature FIFO enabled value.
* When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and
* 66) to be written into the FIFO buffer.
* @return Current temperature FIFO enabled value
* @see MPU6050_RA_FIFO_EN
*/
bool MPU6050::getTempFIFOEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, buffer);
return buffer[0];
}
/** Set temperature FIFO enabled value.
* @param enabled New temperature FIFO enabled value
* @see getTempFIFOEnabled()
* @see MPU6050_RA_FIFO_EN
*/
void MPU6050::setTempFIFOEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, enabled);
}
/** Get gyroscope X-axis FIFO enabled value.
* When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and
* 68) to be written into the FIFO buffer.
* @return Current gyroscope X-axis FIFO enabled value
* @see MPU6050_RA_FIFO_EN
*/
bool MPU6050::getXGyroFIFOEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, buffer);
return buffer[0];
}
/** Set gyroscope X-axis FIFO enabled value.
* @param enabled New gyroscope X-axis FIFO enabled value
* @see getXGyroFIFOEnabled()
* @see MPU6050_RA_FIFO_EN
*/
void MPU6050::setXGyroFIFOEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, enabled);
}
/** Get gyroscope Y-axis FIFO enabled value.
* When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and
* 70) to be written into the FIFO buffer.
* @return Current gyroscope Y-axis FIFO enabled value
* @see MPU6050_RA_FIFO_EN
*/
bool MPU6050::getYGyroFIFOEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, buffer);
return buffer[0];
}
/** Set gyroscope Y-axis FIFO enabled value.
* @param enabled New gyroscope Y-axis FIFO enabled value
* @see getYGyroFIFOEnabled()
* @see MPU6050_RA_FIFO_EN
*/
void MPU6050::setYGyroFIFOEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, enabled);
}
/** Get gyroscope Z-axis FIFO enabled value.
* When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and
* 72) to be written into the FIFO buffer.
* @return Current gyroscope Z-axis FIFO enabled value
* @see MPU6050_RA_FIFO_EN
*/
bool MPU6050::getZGyroFIFOEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, buffer);
return buffer[0];
}
/** Set gyroscope Z-axis FIFO enabled value.
* @param enabled New gyroscope Z-axis FIFO enabled value
* @see getZGyroFIFOEnabled()
* @see MPU6050_RA_FIFO_EN
*/
void MPU6050::setZGyroFIFOEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, enabled);
}
/** Get accelerometer FIFO enabled value.
* When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H,
* ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be
* written into the FIFO buffer.
* @return Current accelerometer FIFO enabled value
* @see MPU6050_RA_FIFO_EN
*/
bool MPU6050::getAccelFIFOEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, buffer);
return buffer[0];
}
/** Set accelerometer FIFO enabled value.
* @param enabled New accelerometer FIFO enabled value
* @see getAccelFIFOEnabled()
* @see MPU6050_RA_FIFO_EN
*/
void MPU6050::setAccelFIFOEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, enabled);
}
/** Get Slave 2 FIFO enabled value.
* When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
* associated with Slave 2 to be written into the FIFO buffer.
* @return Current Slave 2 FIFO enabled value
* @see MPU6050_RA_FIFO_EN
*/
bool MPU6050::getSlave2FIFOEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, buffer);
return buffer[0];
}
/** Set Slave 2 FIFO enabled value.
* @param enabled New Slave 2 FIFO enabled value
* @see getSlave2FIFOEnabled()
* @see MPU6050_RA_FIFO_EN
*/
void MPU6050::setSlave2FIFOEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, enabled);
}
/** Get Slave 1 FIFO enabled value.
* When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
* associated with Slave 1 to be written into the FIFO buffer.
* @return Current Slave 1 FIFO enabled value
* @see MPU6050_RA_FIFO_EN
*/
bool MPU6050::getSlave1FIFOEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, buffer);
return buffer[0];
}
/** Set Slave 1 FIFO enabled value.
* @param enabled New Slave 1 FIFO enabled value
* @see getSlave1FIFOEnabled()
* @see MPU6050_RA_FIFO_EN
*/
void MPU6050::setSlave1FIFOEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, enabled);
}
/** Get Slave 0 FIFO enabled value.
* When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
* associated with Slave 0 to be written into the FIFO buffer.
* @return Current Slave 0 FIFO enabled value
* @see MPU6050_RA_FIFO_EN
*/
bool MPU6050::getSlave0FIFOEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, buffer);
return buffer[0];
}
/** Set Slave 0 FIFO enabled value.
* @param enabled New Slave 0 FIFO enabled value
* @see getSlave0FIFOEnabled()
* @see MPU6050_RA_FIFO_EN
*/
void MPU6050::setSlave0FIFOEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, enabled);
}

// I2C_MST_CTRL register

/** Get multi-master enabled value.
* Multi-master capability allows multiple I2C masters to operate on the same
* bus. In circuits where multi-master capability is required, set MULT_MST_EN
* to 1. This will increase current drawn by approximately 30uA.
*
* In circuits where multi-master capability is required, the state of the I2C
* bus must always be monitored by each separate I2C Master. Before an I2C
* Master can assume arbitration of the bus, it must first confirm that no other
* I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the
* MPU-60X0’s bus arbitration detection logic is turned on, enabling it to
* detect when the bus is available.
*
* @return Current multi-master enabled value
* @see MPU6050_RA_I2C_MST_CTRL
*/
bool MPU6050::getMultiMasterEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, buffer);
return buffer[0];
}
/** Set multi-master enabled value.
* @param enabled New multi-master enabled value
* @see getMultiMasterEnabled()
* @see MPU6050_RA_I2C_MST_CTRL
*/
void MPU6050::setMultiMasterEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, enabled);
}
/** Get wait-for-external-sensor-data enabled value.
* When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be
* delayed until External Sensor data from the Slave Devices are loaded into the
* EXT_SENS_DATA registers. This is used to ensure that both the internal sensor
* data (i.e. from gyro and accel) and external sensor data have been loaded to
* their respective data registers (i.e. the data is synced) when the Data Ready
* interrupt is triggered.
*
* @return Current wait-for-external-sensor-data enabled value
* @see MPU6050_RA_I2C_MST_CTRL
*/
bool MPU6050::getWaitForExternalSensorEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, buffer);
return buffer[0];
}
/** Set wait-for-external-sensor-data enabled value.
* @param enabled New wait-for-external-sensor-data enabled value
* @see getWaitForExternalSensorEnabled()
* @see MPU6050_RA_I2C_MST_CTRL
*/
void MPU6050::setWaitForExternalSensorEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, enabled);
}
/** Get Slave 3 FIFO enabled value.
* When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
* associated with Slave 3 to be written into the FIFO buffer.
* @return Current Slave 3 FIFO enabled value
* @see MPU6050_RA_MST_CTRL
*/
bool MPU6050::getSlave3FIFOEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, buffer);
return buffer[0];
}
/** Set Slave 3 FIFO enabled value.
* @param enabled New Slave 3 FIFO enabled value
* @see getSlave3FIFOEnabled()
* @see MPU6050_RA_MST_CTRL
*/
void MPU6050::setSlave3FIFOEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, enabled);
}
/** Get slave read/write transition enabled value.
* The I2C_MST_P_NSR bit configures the I2C Master’s transition from one slave
* read to the next slave read. If the bit equals 0, there will be a restart
* between reads. If the bit equals 1, there will be a stop followed by a start
* of the following read. When a write transaction follows a read transaction,
* the stop followed by a start of the successive write will be always used.
*
* @return Current slave read/write transition enabled value
* @see MPU6050_RA_I2C_MST_CTRL
*/
bool MPU6050::getSlaveReadWriteTransitionEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, buffer);
return buffer[0];
}
/** Set slave read/write transition enabled value.
* @param enabled New slave read/write transition enabled value
* @see getSlaveReadWriteTransitionEnabled()
* @see MPU6050_RA_I2C_MST_CTRL
*/
void MPU6050::setSlaveReadWriteTransitionEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, enabled);
}
/** Get I2C master clock speed.
* I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the
* MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to
* the following table:
*
* <pre>
* I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider
* ————+————————+——————-
* 0 | 348kHz | 23
* 1 | 333kHz | 24
* 2 | 320kHz | 25
* 3 | 308kHz | 26
* 4 | 296kHz | 27
* 5 | 286kHz | 28
* 6 | 276kHz | 29
* 7 | 267kHz | 30
* 8 | 258kHz | 31
* 9 | 500kHz | 16
* 10 | 471kHz | 17
* 11 | 444kHz | 18
* 12 | 421kHz | 19
* 13 | 400kHz | 20
* 14 | 381kHz | 21
* 15 | 364kHz | 22
* </pre>
*
* @return Current I2C master clock speed
* @see MPU6050_RA_I2C_MST_CTRL
*/
uint8_t MPU6050::getMasterClockSpeed() {
I2Cdev::readBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, buffer);
return buffer[0];
}
/** Set I2C master clock speed.
* @reparam speed Current I2C master clock speed
* @see MPU6050_RA_I2C_MST_CTRL
*/
void MPU6050::setMasterClockSpeed(uint8_t speed) {
I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, speed);
}

// I2C_SLV* registers (Slave 0-3)

/** Get the I2C address of the specified slave (0-3).
* Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it’s a read
* operation, and if it is cleared, then it’s a write operation. The remaining
* bits (6-0) are the 7-bit device address of the slave device.
*
* In read mode, the result of the read is placed in the lowest available
* EXT_SENS_DATA register. For further information regarding the allocation of
* read results, please refer to the EXT_SENS_DATA register description
* (Registers 73 – 96).
*
* The MPU-6050 supports a total of five slaves, but Slave 4 has unique
* characteristics, and so it has its own functions (getSlave4* and setSlave4*).
*
* I2C data transactions are performed at the Sample Rate, as defined in
* Register 25. The user is responsible for ensuring that I2C data transactions
* to and from each enabled Slave can be completed within a single period of the
* Sample Rate.
*
* The I2C slave access rate can be reduced relative to the Sample Rate. This
* reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a
* slave’s access rate is reduced relative to the Sample Rate is determined by
* I2C_MST_DELAY_CTRL (Register 103).
*
* The processing order for the slaves is fixed. The sequence followed for
* processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a
* particular Slave is disabled it will be skipped.
*
* Each slave can either be accessed at the sample rate or at a reduced sample
* rate. In a case where some slaves are accessed at the Sample Rate and some
* slaves are accessed at the reduced rate, the sequence of accessing the slaves
* (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will
* be skipped if their access rate dictates that they should not be accessed
* during that particular cycle. For further information regarding the reduced
* access rate, please refer to Register 52. Whether a slave is accessed at the
* Sample Rate or at the reduced rate is determined by the Delay Enable bits in
* Register 103.
*
* @param num Slave number (0-3)
* @return Current address for specified slave
* @see MPU6050_RA_I2C_SLV0_ADDR
*/
uint8_t MPU6050::getSlaveAddress(uint8_t num) {
if (num > 3) return 0;
I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, buffer);
return buffer[0];
}
/** Set the I2C address of the specified slave (0-3).
* @param num Slave number (0-3)
* @param address New address for specified slave
* @see getSlaveAddress()
* @see MPU6050_RA_I2C_SLV0_ADDR
*/
void MPU6050::setSlaveAddress(uint8_t num, uint8_t address) {
if (num > 3) return;
I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, address);
}
/** Get the active internal register for the specified slave (0-3).
* Read/write operations for this slave will be done to whatever internal
* register address is stored in this MPU register.
*
* The MPU-6050 supports a total of five slaves, but Slave 4 has unique
* characteristics, and so it has its own functions.
*
* @param num Slave number (0-3)
* @return Current active register for specified slave
* @see MPU6050_RA_I2C_SLV0_REG
*/
uint8_t MPU6050::getSlaveRegister(uint8_t num) {
if (num > 3) return 0;
I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, buffer);
return buffer[0];
}
/** Set the active internal register for the specified slave (0-3).
* @param num Slave number (0-3)
* @param reg New active register for specified slave
* @see getSlaveRegister()
* @see MPU6050_RA_I2C_SLV0_REG
*/
void MPU6050::setSlaveRegister(uint8_t num, uint8_t reg) {
if (num > 3) return;
I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, reg);
}
/** Get the enabled value for the specified slave (0-3).
* When set to 1, this bit enables Slave 0 for data transfer operations. When
* cleared to 0, this bit disables Slave 0 from data transfer operations.
* @param num Slave number (0-3)
* @return Current enabled value for specified slave
* @see MPU6050_RA_I2C_SLV0_CTRL
*/
bool MPU6050::getSlaveEnabled(uint8_t num) {
if (num > 3) return 0;
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, buffer);
return buffer[0];
}
/** Set the enabled value for the specified slave (0-3).
* @param num Slave number (0-3)
* @param enabled New enabled value for specified slave
* @see getSlaveEnabled()
* @see MPU6050_RA_I2C_SLV0_CTRL
*/
void MPU6050::setSlaveEnabled(uint8_t num, bool enabled) {
if (num > 3) return;
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, enabled);
}
/** Get word pair byte-swapping enabled for the specified slave (0-3).
* When set to 1, this bit enables byte swapping. When byte swapping is enabled,
* the high and low bytes of a word pair are swapped. Please refer to
* I2C_SLV0_GRP for the pairing convention of the word pairs. When cleared to 0,
* bytes transferred to and from Slave 0 will be written to EXT_SENS_DATA
* registers in the order they were transferred.
*
* @param num Slave number (0-3)
* @return Current word pair byte-swapping enabled value for specified slave
* @see MPU6050_RA_I2C_SLV0_CTRL
*/
bool MPU6050::getSlaveWordByteSwap(uint8_t num) {
if (num > 3) return 0;
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, buffer);
return buffer[0];
}
/** Set word pair byte-swapping enabled for the specified slave (0-3).
* @param num Slave number (0-3)
* @param enabled New word pair byte-swapping enabled value for specified slave
* @see getSlaveWordByteSwap()
* @see MPU6050_RA_I2C_SLV0_CTRL
*/
void MPU6050::setSlaveWordByteSwap(uint8_t num, bool enabled) {
if (num > 3) return;
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, enabled);
}
/** Get write mode for the specified slave (0-3).
* When set to 1, the transaction will read or write data only. When cleared to
* 0, the transaction will write a register address prior to reading or writing
* data. This should equal 0 when specifying the register address within the
* Slave device to/from which the ensuing data transaction will take place.
*
* @param num Slave number (0-3)
* @return Current write mode for specified slave (0 = register address + data, 1 = data only)
* @see MPU6050_RA_I2C_SLV0_CTRL
*/
bool MPU6050::getSlaveWriteMode(uint8_t num) {
if (num > 3) return 0;
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, buffer);
return buffer[0];
}
/** Set write mode for the specified slave (0-3).
* @param num Slave number (0-3)
* @param mode New write mode for specified slave (0 = register address + data, 1 = data only)
* @see getSlaveWriteMode()
* @see MPU6050_RA_I2C_SLV0_CTRL
*/
void MPU6050::setSlaveWriteMode(uint8_t num, bool mode) {
if (num > 3) return;
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, mode);
}
/** Get word pair grouping order offset for the specified slave (0-3).
* This sets specifies the grouping order of word pairs received from registers.
* When cleared to 0, bytes from register addresses 0 and 1, 2 and 3, etc (even,
* then odd register addresses) are paired to form a word. When set to 1, bytes
* from register addresses are paired 1 and 2, 3 and 4, etc. (odd, then even
* register addresses) are paired to form a word.
*
* @param num Slave number (0-3)
* @return Current word pair grouping order offset for specified slave
* @see MPU6050_RA_I2C_SLV0_CTRL
*/
bool MPU6050::getSlaveWordGroupOffset(uint8_t num) {
if (num > 3) return 0;
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, buffer);
return buffer[0];
}
/** Set word pair grouping order offset for the specified slave (0-3).
* @param num Slave number (0-3)
* @param enabled New word pair grouping order offset for specified slave
* @see getSlaveWordGroupOffset()
* @see MPU6050_RA_I2C_SLV0_CTRL
*/
void MPU6050::setSlaveWordGroupOffset(uint8_t num, bool enabled) {
if (num > 3) return;
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, enabled);
}
/** Get number of bytes to read for the specified slave (0-3).
* Specifies the number of bytes transferred to and from Slave 0. Clearing this
* bit to 0 is equivalent to disabling the register by writing 0 to I2C_SLV0_EN.
* @param num Slave number (0-3)
* @return Number of bytes to read for specified slave
* @see MPU6050_RA_I2C_SLV0_CTRL
*/
uint8_t MPU6050::getSlaveDataLength(uint8_t num) {
if (num > 3) return 0;
I2Cdev::readBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, buffer);
return buffer[0];
}
/** Set number of bytes to read for the specified slave (0-3).
* @param num Slave number (0-3)
* @param length Number of bytes to read for specified slave
* @see getSlaveDataLength()
* @see MPU6050_RA_I2C_SLV0_CTRL
*/
void MPU6050::setSlaveDataLength(uint8_t num, uint8_t length) {
if (num > 3) return;
I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, length);
}

// I2C_SLV* registers (Slave 4)

/** Get the I2C address of Slave 4.
* Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it’s a read
* operation, and if it is cleared, then it’s a write operation. The remaining
* bits (6-0) are the 7-bit device address of the slave device.
*
* @return Current address for Slave 4
* @see getSlaveAddress()
* @see MPU6050_RA_I2C_SLV4_ADDR
*/
uint8_t MPU6050::getSlave4Address() {
I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, buffer);
return buffer[0];
}
/** Set the I2C address of Slave 4.
* @param address New address for Slave 4
* @see getSlave4Address()
* @see MPU6050_RA_I2C_SLV4_ADDR
*/
void MPU6050::setSlave4Address(uint8_t address) {
I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, address);
}
/** Get the active internal register for the Slave 4.
* Read/write operations for this slave will be done to whatever internal
* register address is stored in this MPU register.
*
* @return Current active register for Slave 4
* @see MPU6050_RA_I2C_SLV4_REG
*/
uint8_t MPU6050::getSlave4Register() {
I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_REG, buffer);
return buffer[0];
}
/** Set the active internal register for Slave 4.
* @param reg New active register for Slave 4
* @see getSlave4Register()
* @see MPU6050_RA_I2C_SLV4_REG
*/
void MPU6050::setSlave4Register(uint8_t reg) {
I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_REG, reg);
}
/** Set new byte to write to Slave 4.
* This register stores the data to be written into the Slave 4. If I2C_SLV4_RW
* is set 1 (set to read), this register has no effect.
* @param data New byte to write to Slave 4
* @see MPU6050_RA_I2C_SLV4_DO
*/
void MPU6050::setSlave4OutputByte(uint8_t data) {
I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_DO, data);
}
/** Get the enabled value for the Slave 4.
* When set to 1, this bit enables Slave 4 for data transfer operations. When
* cleared to 0, this bit disables Slave 4 from data transfer operations.
* @return Current enabled value for Slave 4
* @see MPU6050_RA_I2C_SLV4_CTRL
*/
bool MPU6050::getSlave4Enabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, buffer);
return buffer[0];
}
/** Set the enabled value for Slave 4.
* @param enabled New enabled value for Slave 4
* @see getSlave4Enabled()
* @see MPU6050_RA_I2C_SLV4_CTRL
*/
void MPU6050::setSlave4Enabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, enabled);
}
/** Get the enabled value for Slave 4 transaction interrupts.
* When set to 1, this bit enables the generation of an interrupt signal upon
* completion of a Slave 4 transaction. When cleared to 0, this bit disables the
* generation of an interrupt signal upon completion of a Slave 4 transaction.
* The interrupt status can be observed in Register 54.
*
* @return Current enabled value for Slave 4 transaction interrupts.
* @see MPU6050_RA_I2C_SLV4_CTRL
*/
bool MPU6050::getSlave4InterruptEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, buffer);
return buffer[0];
}
/** Set the enabled value for Slave 4 transaction interrupts.
* @param enabled New enabled value for Slave 4 transaction interrupts.
* @see getSlave4InterruptEnabled()
* @see MPU6050_RA_I2C_SLV4_CTRL
*/
void MPU6050::setSlave4InterruptEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, enabled);
}
/** Get write mode for Slave 4.
* When set to 1, the transaction will read or write data only. When cleared to
* 0, the transaction will write a register address prior to reading or writing
* data. This should equal 0 when specifying the register address within the
* Slave device to/from which the ensuing data transaction will take place.
*
* @return Current write mode for Slave 4 (0 = register address + data, 1 = data only)
* @see MPU6050_RA_I2C_SLV4_CTRL
*/
bool MPU6050::getSlave4WriteMode() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, buffer);
return buffer[0];
}
/** Set write mode for the Slave 4.
* @param mode New write mode for Slave 4 (0 = register address + data, 1 = data only)
* @see getSlave4WriteMode()
* @see MPU6050_RA_I2C_SLV4_CTRL
*/
void MPU6050::setSlave4WriteMode(bool mode) {
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, mode);
}
/** Get Slave 4 master delay value.
* This configures the reduced access rate of I2C slaves relative to the Sample
* Rate. When a slave’s access rate is decreased relative to the Sample Rate,
* the slave is accessed every:
*
* 1 / (1 + I2C_MST_DLY) samples
*
* This base Sample Rate in turn is determined by SMPLRT_DIV (register 25) and
* DLPF_CFG (register 26). Whether a slave’s access rate is reduced relative to
* the Sample Rate is determined by I2C_MST_DELAY_CTRL (register 103). For
* further information regarding the Sample Rate, please refer to register 25.
*
* @return Current Slave 4 master delay value
* @see MPU6050_RA_I2C_SLV4_CTRL
*/
uint8_t MPU6050::getSlave4MasterDelay() {
I2Cdev::readBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, buffer);
return buffer[0];
}
/** Set Slave 4 master delay value.
* @param delay New Slave 4 master delay value
* @see getSlave4MasterDelay()
* @see MPU6050_RA_I2C_SLV4_CTRL
*/
void MPU6050::setSlave4MasterDelay(uint8_t delay) {
I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, delay);
}
/** Get last available byte read from Slave 4.
* This register stores the data read from Slave 4. This field is populated
* after a read transaction.
* @return Last available byte read from to Slave 4
* @see MPU6050_RA_I2C_SLV4_DI
*/
uint8_t MPU6050::getSlate4InputByte() {
I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_DI, buffer);
return buffer[0];
}

// I2C_MST_STATUS register

/** Get FSYNC interrupt status.
* This bit reflects the status of the FSYNC interrupt from an external device
* into the MPU-60X0. This is used as a way to pass an external interrupt
* through the MPU-60X0 to the host application processor. When set to 1, this
* bit will cause an interrupt if FSYNC_INT_EN is asserted in INT_PIN_CFG
* (Register 55).
* @return FSYNC interrupt status
* @see MPU6050_RA_I2C_MST_STATUS
*/
bool MPU6050::getPassthroughStatus() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_PASS_THROUGH_BIT, buffer);
return buffer[0];
}
/** Get Slave 4 transaction done status.
* Automatically sets to 1 when a Slave 4 transaction has completed. This
* triggers an interrupt if the I2C_MST_INT_EN bit in the INT_ENABLE register
* (Register 56) is asserted and if the SLV_4_DONE_INT bit is asserted in the
* I2C_SLV4_CTRL register (Register 52).
* @return Slave 4 transaction done status
* @see MPU6050_RA_I2C_MST_STATUS
*/
bool MPU6050::getSlave4IsDone() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_DONE_BIT, buffer);
return buffer[0];
}
/** Get master arbitration lost status.
* This bit automatically sets to 1 when the I2C Master has lost arbitration of
* the auxiliary I2C bus (an error condition). This triggers an interrupt if the
* I2C_MST_INT_EN bit in the INT_ENABLE register (Register 56) is asserted.
* @return Master arbitration lost status
* @see MPU6050_RA_I2C_MST_STATUS
*/
bool MPU6050::getLostArbitration() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_LOST_ARB_BIT, buffer);
return buffer[0];
}
/** Get Slave 4 NACK status.
* This bit automatically sets to 1 when the I2C Master receives a NACK in a
* transaction with Slave 4. This triggers an interrupt if the I2C_MST_INT_EN
* bit in the INT_ENABLE register (Register 56) is asserted.
* @return Slave 4 NACK interrupt status
* @see MPU6050_RA_I2C_MST_STATUS
*/
bool MPU6050::getSlave4Nack() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_NACK_BIT, buffer);
return buffer[0];
}
/** Get Slave 3 NACK status.
* This bit automatically sets to 1 when the I2C Master receives a NACK in a
* transaction with Slave 3. This triggers an interrupt if the I2C_MST_INT_EN
* bit in the INT_ENABLE register (Register 56) is asserted.
* @return Slave 3 NACK interrupt status
* @see MPU6050_RA_I2C_MST_STATUS
*/
bool MPU6050::getSlave3Nack() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV3_NACK_BIT, buffer);
return buffer[0];
}
/** Get Slave 2 NACK status.
* This bit automatically sets to 1 when the I2C Master receives a NACK in a
* transaction with Slave 2. This triggers an interrupt if the I2C_MST_INT_EN
* bit in the INT_ENABLE register (Register 56) is asserted.
* @return Slave 2 NACK interrupt status
* @see MPU6050_RA_I2C_MST_STATUS
*/
bool MPU6050::getSlave2Nack() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV2_NACK_BIT, buffer);
return buffer[0];
}
/** Get Slave 1 NACK status.
* This bit automatically sets to 1 when the I2C Master receives a NACK in a
* transaction with Slave 1. This triggers an interrupt if the I2C_MST_INT_EN
* bit in the INT_ENABLE register (Register 56) is asserted.
* @return Slave 1 NACK interrupt status
* @see MPU6050_RA_I2C_MST_STATUS
*/
bool MPU6050::getSlave1Nack() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV1_NACK_BIT, buffer);
return buffer[0];
}
/** Get Slave 0 NACK status.
* This bit automatically sets to 1 when the I2C Master receives a NACK in a
* transaction with Slave 0. This triggers an interrupt if the I2C_MST_INT_EN
* bit in the INT_ENABLE register (Register 56) is asserted.
* @return Slave 0 NACK interrupt status
* @see MPU6050_RA_I2C_MST_STATUS
*/
bool MPU6050::getSlave0Nack() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV0_NACK_BIT, buffer);
return buffer[0];
}

// INT_PIN_CFG register

/** Get interrupt logic level mode.
* Will be set 0 for active-high, 1 for active-low.
* @return Current interrupt mode (0=active-high, 1=active-low)
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_INT_LEVEL_BIT
*/
bool MPU6050::getInterruptMode() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, buffer);
return buffer[0];
}
/** Set interrupt logic level mode.
* @param mode New interrupt mode (0=active-high, 1=active-low)
* @see getInterruptMode()
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_INT_LEVEL_BIT
*/
void MPU6050::setInterruptMode(bool mode) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, mode);
}
/** Get interrupt drive mode.
* Will be set 0 for push-pull, 1 for open-drain.
* @return Current interrupt drive mode (0=push-pull, 1=open-drain)
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_INT_OPEN_BIT
*/
bool MPU6050::getInterruptDrive() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, buffer);
return buffer[0];
}
/** Set interrupt drive mode.
* @param drive New interrupt drive mode (0=push-pull, 1=open-drain)
* @see getInterruptDrive()
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_INT_OPEN_BIT
*/
void MPU6050::setInterruptDrive(bool drive) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, drive);
}
/** Get interrupt latch mode.
* Will be set 0 for 50us-pulse, 1 for latch-until-int-cleared.
* @return Current latch mode (0=50us-pulse, 1=latch-until-int-cleared)
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_LATCH_INT_EN_BIT
*/
bool MPU6050::getInterruptLatch() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, buffer);
return buffer[0];
}
/** Set interrupt latch mode.
* @param latch New latch mode (0=50us-pulse, 1=latch-until-int-cleared)
* @see getInterruptLatch()
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_LATCH_INT_EN_BIT
*/
void MPU6050::setInterruptLatch(bool latch) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, latch);
}
/** Get interrupt latch clear mode.
* Will be set 0 for status-read-only, 1 for any-register-read.
* @return Current latch clear mode (0=status-read-only, 1=any-register-read)
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
*/
bool MPU6050::getInterruptLatchClear() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, buffer);
return buffer[0];
}
/** Set interrupt latch clear mode.
* @param clear New latch clear mode (0=status-read-only, 1=any-register-read)
* @see getInterruptLatchClear()
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
*/
void MPU6050::setInterruptLatchClear(bool clear) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, clear);
}
/** Get FSYNC interrupt logic level mode.
* @return Current FSYNC interrupt mode (0=active-high, 1=active-low)
* @see getFSyncInterruptMode()
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
*/
bool MPU6050::getFSyncInterruptLevel() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, buffer);
return buffer[0];
}
/** Set FSYNC interrupt logic level mode.
* @param mode New FSYNC interrupt mode (0=active-high, 1=active-low)
* @see getFSyncInterruptMode()
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
*/
void MPU6050::setFSyncInterruptLevel(bool level) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, level);
}
/** Get FSYNC pin interrupt enabled setting.
* Will be set 0 for disabled, 1 for enabled.
* @return Current interrupt enabled setting
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
*/
bool MPU6050::getFSyncInterruptEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, buffer);
return buffer[0];
}
/** Set FSYNC pin interrupt enabled setting.
* @param enabled New FSYNC pin interrupt enabled setting
* @see getFSyncInterruptEnabled()
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
*/
void MPU6050::setFSyncInterruptEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, enabled);
}
/** Get I2C bypass enabled status.
* When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
* 0, the host application processor will be able to directly access the
* auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
* application processor will not be able to directly access the auxiliary I2C
* bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
* bit[5]).
* @return Current I2C bypass enabled status
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
*/
bool MPU6050::getI2CBypassEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, buffer);
return buffer[0];
}
/** Set I2C bypass enabled status.
* When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
* 0, the host application processor will be able to directly access the
* auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
* application processor will not be able to directly access the auxiliary I2C
* bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
* bit[5]).
* @param enabled New I2C bypass enabled status
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
*/
void MPU6050::setI2CBypassEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled);
}
/** Get reference clock output enabled status.
* When this bit is equal to 1, a reference clock output is provided at the
* CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
* further information regarding CLKOUT, please refer to the MPU-60X0 Product
* Specification document.
* @return Current reference clock output enabled status
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_CLKOUT_EN_BIT
*/
bool MPU6050::getClockOutputEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, buffer);
return buffer[0];
}
/** Set reference clock output enabled status.
* When this bit is equal to 1, a reference clock output is provided at the
* CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
* further information regarding CLKOUT, please refer to the MPU-60X0 Product
* Specification document.
* @param enabled New reference clock output enabled status
* @see MPU6050_RA_INT_PIN_CFG
* @see MPU6050_INTCFG_CLKOUT_EN_BIT
*/
void MPU6050::setClockOutputEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, enabled);
}

// INT_ENABLE register

/** Get full interrupt enabled status.
* Full register byte for all interrupts, for quick reading. Each bit will be
* set 0 for disabled, 1 for enabled.
* @return Current interrupt enabled status
* @see MPU6050_RA_INT_ENABLE
* @see MPU6050_INTERRUPT_FF_BIT
**/
uint8_t MPU6050::getIntEnabled() {
I2Cdev::readByte(devAddr, MPU6050_RA_INT_ENABLE, buffer);
return buffer[0];
}
/** Set full interrupt enabled status.
* Full register byte for all interrupts, for quick reading. Each bit should be
* set 0 for disabled, 1 for enabled.
* @param enabled New interrupt enabled status
* @see getIntFreefallEnabled()
* @see MPU6050_RA_INT_ENABLE
* @see MPU6050_INTERRUPT_FF_BIT
**/
void MPU6050::setIntEnabled(uint8_t enabled) {
I2Cdev::writeByte(devAddr, MPU6050_RA_INT_ENABLE, enabled);
}
/** Get Free Fall interrupt enabled status.
* Will be set 0 for disabled, 1 for enabled.
* @return Current interrupt enabled status
* @see MPU6050_RA_INT_ENABLE
* @see MPU6050_INTERRUPT_FF_BIT
**/
bool MPU6050::getIntFreefallEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, buffer);
return buffer[0];
}
/** Set Free Fall interrupt enabled status.
* @param enabled New interrupt enabled status
* @see getIntFreefallEnabled()
* @see MPU6050_RA_INT_ENABLE
* @see MPU6050_INTERRUPT_FF_BIT
**/
void MPU6050::setIntFreefallEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, enabled);
}
/** Get Motion Detection interrupt enabled status.
* Will be set 0 for disabled, 1 for enabled.
* @return Current interrupt enabled status
* @see MPU6050_RA_INT_ENABLE
* @see MPU6050_INTERRUPT_MOT_BIT
**/
bool MPU6050::getIntMotionEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, buffer);
return buffer[0];
}
/** Set Motion Detection interrupt enabled status.
* @param enabled New interrupt enabled status
* @see getIntMotionEnabled()
* @see MPU6050_RA_INT_ENABLE
* @see MPU6050_INTERRUPT_MOT_BIT
**/
void MPU6050::setIntMotionEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, enabled);
}
/** Get Zero Motion Detection interrupt enabled status.
* Will be set 0 for disabled, 1 for enabled.
* @return Current interrupt enabled status
* @see MPU6050_RA_INT_ENABLE
* @see MPU6050_INTERRUPT_ZMOT_BIT
**/
bool MPU6050::getIntZeroMotionEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
return buffer[0];
}
/** Set Zero Motion Detection interrupt enabled status.
* @param enabled New interrupt enabled status
* @see getIntZeroMotionEnabled()
* @see MPU6050_RA_INT_ENABLE
* @see MPU6050_INTERRUPT_ZMOT_BIT
**/
void MPU6050::setIntZeroMotionEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, enabled);
}
/** Get FIFO Buffer Overflow interrupt enabled status.
* Will be set 0 for disabled, 1 for enabled.
* @return Current interrupt enabled status
* @see MPU6050_RA_INT_ENABLE
* @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
**/
bool MPU6050::getIntFIFOBufferOverflowEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
return buffer[0];
}
/** Set FIFO Buffer Overflow interrupt enabled status.
* @param enabled New interrupt enabled status
* @see getIntFIFOBufferOverflowEnabled()
* @see MPU6050_RA_INT_ENABLE
* @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
**/
void MPU6050::setIntFIFOBufferOverflowEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, enabled);
}
/** Get I2C Master interrupt enabled status.
* This enables any of the I2C Master interrupt sources to generate an
* interrupt. Will be set 0 for disabled, 1 for enabled.
* @return Current interrupt enabled status
* @see MPU6050_RA_INT_ENABLE
* @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
**/
bool MPU6050::getIntI2CMasterEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
return buffer[0];
}
/** Set I2C Master interrupt enabled status.
* @param enabled New interrupt enabled status
* @see getIntI2CMasterEnabled()
* @see MPU6050_RA_INT_ENABLE
* @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
**/
void MPU6050::setIntI2CMasterEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, enabled);
}
/** Get Data Ready interrupt enabled setting.
* This event occurs each time a write operation to all of the sensor registers
* has been completed. Will be set 0 for disabled, 1 for enabled.
* @return Current interrupt enabled status
* @see MPU6050_RA_INT_ENABLE
* @see MPU6050_INTERRUPT_DATA_RDY_BIT
*/
bool MPU6050::getIntDataReadyEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
return buffer[0];
}
/** Set Data Ready interrupt enabled status.
* @param enabled New interrupt enabled status
* @see getIntDataReadyEnabled()
* @see MPU6050_RA_INT_CFG
* @see MPU6050_INTERRUPT_DATA_RDY_BIT
*/
void MPU6050::setIntDataReadyEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, enabled);
}

// INT_STATUS register

/** Get full set of interrupt status bits.
* These bits clear to 0 after the register has been read. Very useful
* for getting multiple INT statuses, since each single bit read clears
* all of them because it has to read the whole byte.
* @return Current interrupt status
* @see MPU6050_RA_INT_STATUS
*/
uint8_t MPU6050::getIntStatus() {
I2Cdev::readByte(devAddr, MPU6050_RA_INT_STATUS, buffer);
return buffer[0];
}
/** Get Free Fall interrupt status.
* This bit automatically sets to 1 when a Free Fall interrupt has been
* generated. The bit clears to 0 after the register has been read.
* @return Current interrupt status
* @see MPU6050_RA_INT_STATUS
* @see MPU6050_INTERRUPT_FF_BIT
*/
bool MPU6050::getIntFreefallStatus() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FF_BIT, buffer);
return buffer[0];
}
/** Get Motion Detection interrupt status.
* This bit automatically sets to 1 when a Motion Detection interrupt has been
* generated. The bit clears to 0 after the register has been read.
* @return Current interrupt status
* @see MPU6050_RA_INT_STATUS
* @see MPU6050_INTERRUPT_MOT_BIT
*/
bool MPU6050::getIntMotionStatus() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_MOT_BIT, buffer);
return buffer[0];
}
/** Get Zero Motion Detection interrupt status.
* This bit automatically sets to 1 when a Zero Motion Detection interrupt has
* been generated. The bit clears to 0 after the register has been read.
* @return Current interrupt status
* @see MPU6050_RA_INT_STATUS
* @see MPU6050_INTERRUPT_ZMOT_BIT
*/
bool MPU6050::getIntZeroMotionStatus() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
return buffer[0];
}
/** Get FIFO Buffer Overflow interrupt status.
* This bit automatically sets to 1 when a Free Fall interrupt has been
* generated. The bit clears to 0 after the register has been read.
* @return Current interrupt status
* @see MPU6050_RA_INT_STATUS
* @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
*/
bool MPU6050::getIntFIFOBufferOverflowStatus() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
return buffer[0];
}
/** Get I2C Master interrupt status.
* This bit automatically sets to 1 when an I2C Master interrupt has been
* generated. For a list of I2C Master interrupts, please refer to Register 54.
* The bit clears to 0 after the register has been read.
* @return Current interrupt status
* @see MPU6050_RA_INT_STATUS
* @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
*/
bool MPU6050::getIntI2CMasterStatus() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
return buffer[0];
}
/** Get Data Ready interrupt status.
* This bit automatically sets to 1 when a Data Ready interrupt has been
* generated. The bit clears to 0 after the register has been read.
* @return Current interrupt status
* @see MPU6050_RA_INT_STATUS
* @see MPU6050_INTERRUPT_DATA_RDY_BIT
*/
bool MPU6050::getIntDataReadyStatus() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
return buffer[0];
}

// ACCEL_*OUT_* registers

/** Get raw 9-axis motion sensor readings (accel/gyro/compass).
* FUNCTION NOT FULLY IMPLEMENTED YET.
* @param ax 16-bit signed integer container for accelerometer X-axis value
* @param ay 16-bit signed integer container for accelerometer Y-axis value
* @param az 16-bit signed integer container for accelerometer Z-axis value
* @param gx 16-bit signed integer container for gyroscope X-axis value
* @param gy 16-bit signed integer container for gyroscope Y-axis value
* @param gz 16-bit signed integer container for gyroscope Z-axis value
* @param mx 16-bit signed integer container for magnetometer X-axis value
* @param my 16-bit signed integer container for magnetometer Y-axis value
* @param mz 16-bit signed integer container for magnetometer Z-axis value
* @see getMotion6()
* @see getAcceleration()
* @see getRotation()
* @see MPU6050_RA_ACCEL_XOUT_H
*/
void MPU6050::getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz) {
getMotion6(ax, ay, az, gx, gy, gz);
// TODO: magnetometer integration
}
/** Get raw 6-axis motion sensor readings (accel/gyro).
* Retrieves all currently available motion sensor values.
* @param ax 16-bit signed integer container for accelerometer X-axis value
* @param ay 16-bit signed integer container for accelerometer Y-axis value
* @param az 16-bit signed integer container for accelerometer Z-axis value
* @param gx 16-bit signed integer container for gyroscope X-axis value
* @param gy 16-bit signed integer container for gyroscope Y-axis value
* @param gz 16-bit signed integer container for gyroscope Z-axis value
* @see getAcceleration()
* @see getRotation()
* @see MPU6050_RA_ACCEL_XOUT_H
*/
void MPU6050::getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz) {
I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 14, buffer);
*ax = (((int16_t)buffer[0]) << 8) | buffer[1];
*ay = (((int16_t)buffer[2]) << 8) | buffer[3];
*az = (((int16_t)buffer[4]) << 8) | buffer[5];
*gx = (((int16_t)buffer[8]) << 8) | buffer[9];
*gy = (((int16_t)buffer[10]) << 8) | buffer[11];
*gz = (((int16_t)buffer[12]) << 8) | buffer[13];
}
/** Get 3-axis accelerometer readings.
* These registers store the most recent accelerometer measurements.
* Accelerometer measurements are written to these registers at the Sample Rate
* as defined in Register 25.
*
* The accelerometer measurement registers, along with the temperature
* measurement registers, gyroscope measurement registers, and external sensor
* data registers, are composed of two sets of registers: an internal register
* set and a user-facing read register set.
*
* The data within the accelerometer sensors’ internal register set is always
* updated at the Sample Rate. Meanwhile, the user-facing read register set
* duplicates the internal register set’s data values whenever the serial
* interface is idle. This guarantees that a burst read of sensor registers will
* read measurements from the same sampling instant. Note that if burst reads
* are not used, the user is responsible for ensuring a set of single byte reads
* correspond to a single sampling instant by checking the Data Ready interrupt.
*
* Each 16-bit accelerometer measurement has a full scale defined in ACCEL_FS
* (Register 28). For each full scale setting, the accelerometers’ sensitivity
* per LSB in ACCEL_xOUT is shown in the table below:
*
* <pre>
* AFS_SEL | Full Scale Range | LSB Sensitivity
* ——–+——————+—————-
* 0 | +/- 2g | 8192 LSB/mg
* 1 | +/- 4g | 4096 LSB/mg
* 2 | +/- 8g | 2048 LSB/mg
* 3 | +/- 16g | 1024 LSB/mg
* </pre>
*
* @param x 16-bit signed integer container for X-axis acceleration
* @param y 16-bit signed integer container for Y-axis acceleration
* @param z 16-bit signed integer container for Z-axis acceleration
* @see MPU6050_RA_GYRO_XOUT_H
*/
void MPU6050::getAcceleration(int16_t* x, int16_t* y, int16_t* z) {
I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 6, buffer);
*x = (((int16_t)buffer[0]) << 8) | buffer[1];
*y = (((int16_t)buffer[2]) << 8) | buffer[3];
*z = (((int16_t)buffer[4]) << 8) | buffer[5];
}
/** Get X-axis accelerometer reading.
* @return X-axis acceleration measurement in 16-bit 2’s complement format
* @see getMotion6()
* @see MPU6050_RA_ACCEL_XOUT_H
*/
int16_t MPU6050::getAccelerationX() {
I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 2, buffer);
return (((int16_t)buffer[0]) << 8) | buffer[1];
}
/** Get Y-axis accelerometer reading.
* @return Y-axis acceleration measurement in 16-bit 2’s complement format
* @see getMotion6()
* @see MPU6050_RA_ACCEL_YOUT_H
*/
int16_t MPU6050::getAccelerationY() {
I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_YOUT_H, 2, buffer);
return (((int16_t)buffer[0]) << 8) | buffer[1];
}
/** Get Z-axis accelerometer reading.
* @return Z-axis acceleration measurement in 16-bit 2’s complement format
* @see getMotion6()
* @see MPU6050_RA_ACCEL_ZOUT_H
*/
int16_t MPU6050::getAccelerationZ() {
I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_ZOUT_H, 2, buffer);
return (((int16_t)buffer[0]) << 8) | buffer[1];
}

// TEMP_OUT_* registers

/** Get current internal temperature.
* @return Temperature reading in 16-bit 2’s complement format
* @see MPU6050_RA_TEMP_OUT_H
*/
int16_t MPU6050::getTemperature() {
I2Cdev::readBytes(devAddr, MPU6050_RA_TEMP_OUT_H, 2, buffer);
return (((int16_t)buffer[0]) << 8) | buffer[1];
}

// GYRO_*OUT_* registers

/** Get 3-axis gyroscope readings.
* These gyroscope measurement registers, along with the accelerometer
* measurement registers, temperature measurement registers, and external sensor
* data registers, are composed of two sets of registers: an internal register
* set and a user-facing read register set.
* The data within the gyroscope sensors’ internal register set is always
* updated at the Sample Rate. Meanwhile, the user-facing read register set
* duplicates the internal register set’s data values whenever the serial
* interface is idle. This guarantees that a burst read of sensor registers will
* read measurements from the same sampling instant. Note that if burst reads
* are not used, the user is responsible for ensuring a set of single byte reads
* correspond to a single sampling instant by checking the Data Ready interrupt.
*
* Each 16-bit gyroscope measurement has a full scale defined in FS_SEL
* (Register 27). For each full scale setting, the gyroscopes’ sensitivity per
* LSB in GYRO_xOUT is shown in the table below:
*
* <pre>
* FS_SEL | Full Scale Range | LSB Sensitivity
* ——-+——————–+—————-
* 0 | +/- 250 degrees/s | 131 LSB/deg/s
* 1 | +/- 500 degrees/s | 65.5 LSB/deg/s
* 2 | +/- 1000 degrees/s | 32.8 LSB/deg/s
* 3 | +/- 2000 degrees/s | 16.4 LSB/deg/s
* </pre>
*
* @param x 16-bit signed integer container for X-axis rotation
* @param y 16-bit signed integer container for Y-axis rotation
* @param z 16-bit signed integer container for Z-axis rotation
* @see getMotion6()
* @see MPU6050_RA_GYRO_XOUT_H
*/
void MPU6050::getRotation(int16_t* x, int16_t* y, int16_t* z) {
I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 6, buffer);
*x = (((int16_t)buffer[0]) << 8) | buffer[1];
*y = (((int16_t)buffer[2]) << 8) | buffer[3];
*z = (((int16_t)buffer[4]) << 8) | buffer[5];
}
/** Get X-axis gyroscope reading.
* @return X-axis rotation measurement in 16-bit 2’s complement format
* @see getMotion6()
* @see MPU6050_RA_GYRO_XOUT_H
*/
int16_t MPU6050::getRotationX() {
I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 2, buffer);
return (((int16_t)buffer[0]) << 8) | buffer[1];
}
/** Get Y-axis gyroscope reading.
* @return Y-axis rotation measurement in 16-bit 2’s complement format
* @see getMotion6()
* @see MPU6050_RA_GYRO_YOUT_H
*/
int16_t MPU6050::getRotationY() {
I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_YOUT_H, 2, buffer);
return (((int16_t)buffer[0]) << 8) | buffer[1];
}
/** Get Z-axis gyroscope reading.
* @return Z-axis rotation measurement in 16-bit 2’s complement format
* @see getMotion6()
* @see MPU6050_RA_GYRO_ZOUT_H
*/
int16_t MPU6050::getRotationZ() {
I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_ZOUT_H, 2, buffer);
return (((int16_t)buffer[0]) << 8) | buffer[1];
}

// EXT_SENS_DATA_* registers

/** Read single byte from external sensor data register.
* These registers store data read from external sensors by the Slave 0, 1, 2,
* and 3 on the auxiliary I2C interface. Data read by Slave 4 is stored in
* I2C_SLV4_DI (Register 53).
*
* External sensor data is written to these registers at the Sample Rate as
* defined in Register 25. This access rate can be reduced by using the Slave
* Delay Enable registers (Register 103).
*
* External sensor data registers, along with the gyroscope measurement
* registers, accelerometer measurement registers, and temperature measurement
* registers, are composed of two sets of registers: an internal register set
* and a user-facing read register set.
*
* The data within the external sensors’ internal register set is always updated
* at the Sample Rate (or the reduced access rate) whenever the serial interface
* is idle. This guarantees that a burst read of sensor registers will read
* measurements from the same sampling instant. Note that if burst reads are not
* used, the user is responsible for ensuring a set of single byte reads
* correspond to a single sampling instant by checking the Data Ready interrupt.
*
* Data is placed in these external sensor data registers according to
* I2C_SLV0_CTRL, I2C_SLV1_CTRL, I2C_SLV2_CTRL, and I2C_SLV3_CTRL (Registers 39,
* 42, 45, and 48). When more than zero bytes are read (I2C_SLVx_LEN > 0) from
* an enabled slave (I2C_SLVx_EN = 1), the slave is read at the Sample Rate (as
* defined in Register 25) or delayed rate (if specified in Register 52 and
* 103). During each Sample cycle, slave reads are performed in order of Slave
* number. If all slaves are enabled with more than zero bytes to be read, the
* order will be Slave 0, followed by Slave 1, Slave 2, and Slave 3.
*
* Each enabled slave will have EXT_SENS_DATA registers associated with it by
* number of bytes read (I2C_SLVx_LEN) in order of slave number, starting from
* EXT_SENS_DATA_00. Note that this means enabling or disabling a slave may
* change the higher numbered slaves’ associated registers. Furthermore, if
* fewer total bytes are being read from the external sensors as a result of
* such a change, then the data remaining in the registers which no longer have
* an associated slave device (i.e. high numbered registers) will remain in
* these previously allocated registers unless reset.
*
* If the sum of the read lengths of all SLVx transactions exceed the number of
* available EXT_SENS_DATA registers, the excess bytes will be dropped. There
* are 24 EXT_SENS_DATA registers and hence the total read lengths between all
* the slaves cannot be greater than 24 or some bytes will be lost.
*
* Note: Slave 4’s behavior is distinct from that of Slaves 0-3. For further
* information regarding the characteristics of Slave 4, please refer to
* Registers 49 to 53.
*
* EXAMPLE:
* Suppose that Slave 0 is enabled with 4 bytes to be read (I2C_SLV0_EN = 1 and
* I2C_SLV0_LEN = 4) while Slave 1 is enabled with 2 bytes to be read so that
* I2C_SLV1_EN = 1 and I2C_SLV1_LEN = 2. In such a situation, EXT_SENS_DATA _00
* through _03 will be associated with Slave 0, while EXT_SENS_DATA _04 and 05
* will be associated with Slave 1. If Slave 2 is enabled as well, registers
* starting from EXT_SENS_DATA_06 will be allocated to Slave 2.
*
* If Slave 2 is disabled while Slave 3 is enabled in this same situation, then
* registers starting from EXT_SENS_DATA_06 will be allocated to Slave 3
* instead.
*
* REGISTER ALLOCATION FOR DYNAMIC DISABLE VS. NORMAL DISABLE:
* If a slave is disabled at any time, the space initially allocated to the
* slave in the EXT_SENS_DATA register, will remain associated with that slave.
* This is to avoid dynamic adjustment of the register allocation.
*
* The allocation of the EXT_SENS_DATA registers is recomputed only when (1) all
* slaves are disabled, or (2) the I2C_MST_RST bit is set (Register 106).
*
* This above is also true if one of the slaves gets NACKed and stops
* functioning.
*
* @param position Starting position (0-23)
* @return Byte read from register
*/
uint8_t MPU6050::getExternalSensorByte(int position) {
I2Cdev::readByte(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, buffer);
return buffer[0];
}
/** Read word (2 bytes) from external sensor data registers.
* @param position Starting position (0-21)
* @return Word read from register
* @see getExternalSensorByte()
*/
uint16_t MPU6050::getExternalSensorWord(int position) {
I2Cdev::readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 2, buffer);
return (((uint16_t)buffer[0]) << 8) | buffer[1];
}
/** Read double word (4 bytes) from external sensor data registers.
* @param position Starting position (0-20)
* @return Double word read from registers
* @see getExternalSensorByte()
*/
uint32_t MPU6050::getExternalSensorDWord(int position) {
I2Cdev::readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 4, buffer);
return (((uint32_t)buffer[0]) << 24) | (((uint32_t)buffer[1]) << 16) | (((uint16_t)buffer[2]) << 8) | buffer[3];
}

// MOT_DETECT_STATUS register

/** Get X-axis negative motion detection interrupt status.
* @return Motion detection status
* @see MPU6050_RA_MOT_DETECT_STATUS
* @see MPU6050_MOTION_MOT_XNEG_BIT
*/
bool MPU6050::getXNegMotionDetected() {
I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XNEG_BIT, buffer);
return buffer[0];
}
/** Get X-axis positive motion detection interrupt status.
* @return Motion detection status
* @see MPU6050_RA_MOT_DETECT_STATUS
* @see MPU6050_MOTION_MOT_XPOS_BIT
*/
bool MPU6050::getXPosMotionDetected() {
I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XPOS_BIT, buffer);
return buffer[0];
}
/** Get Y-axis negative motion detection interrupt status.
* @return Motion detection status
* @see MPU6050_RA_MOT_DETECT_STATUS
* @see MPU6050_MOTION_MOT_YNEG_BIT
*/
bool MPU6050::getYNegMotionDetected() {
I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YNEG_BIT, buffer);
return buffer[0];
}
/** Get Y-axis positive motion detection interrupt status.
* @return Motion detection status
* @see MPU6050_RA_MOT_DETECT_STATUS
* @see MPU6050_MOTION_MOT_YPOS_BIT
*/
bool MPU6050::getYPosMotionDetected() {
I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YPOS_BIT, buffer);
return buffer[0];
}
/** Get Z-axis negative motion detection interrupt status.
* @return Motion detection status
* @see MPU6050_RA_MOT_DETECT_STATUS
* @see MPU6050_MOTION_MOT_ZNEG_BIT
*/
bool MPU6050::getZNegMotionDetected() {
I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZNEG_BIT, buffer);
return buffer[0];
}
/** Get Z-axis positive motion detection interrupt status.
* @return Motion detection status
* @see MPU6050_RA_MOT_DETECT_STATUS
* @see MPU6050_MOTION_MOT_ZPOS_BIT
*/
bool MPU6050::getZPosMotionDetected() {
I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZPOS_BIT, buffer);
return buffer[0];
}
/** Get zero motion detection interrupt status.
* @return Motion detection status
* @see MPU6050_RA_MOT_DETECT_STATUS
* @see MPU6050_MOTION_MOT_ZRMOT_BIT
*/
bool MPU6050::getZeroMotionDetected() {
I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZRMOT_BIT, buffer);
return buffer[0];
}

// I2C_SLV*_DO register

/** Write byte to Data Output container for specified slave.
* This register holds the output data written into Slave when Slave is set to
* write mode. For further information regarding Slave control, please
* refer to Registers 37 to 39 and immediately following.
* @param num Slave number (0-3)
* @param data Byte to write
* @see MPU6050_RA_I2C_SLV0_DO
*/
void MPU6050::setSlaveOutputByte(uint8_t num, uint8_t data) {
if (num > 3) return;
I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_DO + num, data);
}

// I2C_MST_DELAY_CTRL register

/** Get external data shadow delay enabled status.
* This register is used to specify the timing of external sensor data
* shadowing. When DELAY_ES_SHADOW is set to 1, shadowing of external
* sensor data is delayed until all data has been received.
* @return Current external data shadow delay enabled status.
* @see MPU6050_RA_I2C_MST_DELAY_CTRL
* @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
*/
bool MPU6050::getExternalShadowDelayEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, buffer);
return buffer[0];
}
/** Set external data shadow delay enabled status.
* @param enabled New external data shadow delay enabled status.
* @see getExternalShadowDelayEnabled()
* @see MPU6050_RA_I2C_MST_DELAY_CTRL
* @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
*/
void MPU6050::setExternalShadowDelayEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, enabled);
}
/** Get slave delay enabled status.
* When a particular slave delay is enabled, the rate of access for the that
* slave device is reduced. When a slave’s access rate is decreased relative to
* the Sample Rate, the slave is accessed every:
*
* 1 / (1 + I2C_MST_DLY) Samples
*
* This base Sample Rate in turn is determined by SMPLRT_DIV (register * 25)
* and DLPF_CFG (register 26).
*
* For further information regarding I2C_MST_DLY, please refer to register 52.
* For further information regarding the Sample Rate, please refer to register 25.
*
* @param num Slave number (0-4)
* @return Current slave delay enabled status.
* @see MPU6050_RA_I2C_MST_DELAY_CTRL
* @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
*/
bool MPU6050::getSlaveDelayEnabled(uint8_t num) {
// MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT is 4, SLV3 is 3, etc.
if (num > 4) return 0;
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, buffer);
return buffer[0];
}
/** Set slave delay enabled status.
* @param num Slave number (0-4)
* @param enabled New slave delay enabled status.
* @see MPU6050_RA_I2C_MST_DELAY_CTRL
* @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
*/
void MPU6050::setSlaveDelayEnabled(uint8_t num, bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, enabled);
}

// SIGNAL_PATH_RESET register

/** Reset gyroscope signal path.
* The reset will revert the signal path analog to digital converters and
* filters to their power up configurations.
* @see MPU6050_RA_SIGNAL_PATH_RESET
* @see MPU6050_PATHRESET_GYRO_RESET_BIT
*/
void MPU6050::resetGyroscopePath() {
I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_GYRO_RESET_BIT, true);
}
/** Reset accelerometer signal path.
* The reset will revert the signal path analog to digital converters and
* filters to their power up configurations.
* @see MPU6050_RA_SIGNAL_PATH_RESET
* @see MPU6050_PATHRESET_ACCEL_RESET_BIT
*/
void MPU6050::resetAccelerometerPath() {
I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_ACCEL_RESET_BIT, true);
}
/** Reset temperature sensor signal path.
* The reset will revert the signal path analog to digital converters and
* filters to their power up configurations.
* @see MPU6050_RA_SIGNAL_PATH_RESET
* @see MPU6050_PATHRESET_TEMP_RESET_BIT
*/
void MPU6050::resetTemperaturePath() {
I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_TEMP_RESET_BIT, true);
}

// MOT_DETECT_CTRL register

/** Get accelerometer power-on delay.
* The accelerometer data path provides samples to the sensor registers, Motion
* detection, Zero Motion detection, and Free Fall detection modules. The
* signal path contains filters which must be flushed on wake-up with new
* samples before the detection modules begin operations. The default wake-up
* delay, of 4ms can be lengthened by up to 3ms. This additional delay is
* specified in ACCEL_ON_DELAY in units of 1 LSB = 1 ms. The user may select
* any value above zero unless instructed otherwise by InvenSense. Please refer
* to Section 8 of the MPU-6000/MPU-6050 Product Specification document for
* further information regarding the detection modules.
* @return Current accelerometer power-on delay
* @see MPU6050_RA_MOT_DETECT_CTRL
* @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
*/
uint8_t MPU6050::getAccelerometerPowerOnDelay() {
I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, buffer);
return buffer[0];
}
/** Set accelerometer power-on delay.
* @param delay New accelerometer power-on delay (0-3)
* @see getAccelerometerPowerOnDelay()
* @see MPU6050_RA_MOT_DETECT_CTRL
* @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
*/
void MPU6050::setAccelerometerPowerOnDelay(uint8_t delay) {
I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, delay);
}
/** Get Free Fall detection counter decrement configuration.
* Detection is registered by the Free Fall detection module after accelerometer
* measurements meet their respective threshold conditions over a specified
* number of samples. When the threshold conditions are met, the corresponding
* detection counter increments by 1. The user may control the rate at which the
* detection counter decrements when the threshold condition is not met by
* configuring FF_COUNT. The decrement rate can be set according to the
* following table:
*
* <pre>
* FF_COUNT | Counter Decrement
* ———+——————
* 0 | Reset
* 1 | 1
* 2 | 2
* 3 | 4
* </pre>
*
* When FF_COUNT is configured to 0 (reset), any non-qualifying sample will
* reset the counter to 0. For further information on Free Fall detection,
* please refer to Registers 29 to 32.
*
* @return Current decrement configuration
* @see MPU6050_RA_MOT_DETECT_CTRL
* @see MPU6050_DETECT_FF_COUNT_BIT
*/
uint8_t MPU6050::getFreefallDetectionCounterDecrement() {
I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, buffer);
return buffer[0];
}
/** Set Free Fall detection counter decrement configuration.
* @param decrement New decrement configuration value
* @see getFreefallDetectionCounterDecrement()
* @see MPU6050_RA_MOT_DETECT_CTRL
* @see MPU6050_DETECT_FF_COUNT_BIT
*/
void MPU6050::setFreefallDetectionCounterDecrement(uint8_t decrement) {
I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, decrement);
}
/** Get Motion detection counter decrement configuration.
* Detection is registered by the Motion detection module after accelerometer
* measurements meet their respective threshold conditions over a specified
* number of samples. When the threshold conditions are met, the corresponding
* detection counter increments by 1. The user may control the rate at which the
* detection counter decrements when the threshold condition is not met by
* configuring MOT_COUNT. The decrement rate can be set according to the
* following table:
*
* <pre>
* MOT_COUNT | Counter Decrement
* ———-+——————
* 0 | Reset
* 1 | 1
* 2 | 2
* 3 | 4
* </pre>
*
* When MOT_COUNT is configured to 0 (reset), any non-qualifying sample will
* reset the counter to 0. For further information on Motion detection,
* please refer to Registers 29 to 32.
*
*/
uint8_t MPU6050::getMotionDetectionCounterDecrement() {
I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, buffer);
return buffer[0];
}
/** Set Motion detection counter decrement configuration.
* @param decrement New decrement configuration value
* @see getMotionDetectionCounterDecrement()
* @see MPU6050_RA_MOT_DETECT_CTRL
* @see MPU6050_DETECT_MOT_COUNT_BIT
*/
void MPU6050::setMotionDetectionCounterDecrement(uint8_t decrement) {
I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, decrement);
}

// USER_CTRL register

/** Get FIFO enabled status.
* When this bit is set to 0, the FIFO buffer is disabled. The FIFO buffer
* cannot be written to or read from while disabled. The FIFO buffer’s state
* does not change unless the MPU-60X0 is power cycled.
* @return Current FIFO enabled status
* @see MPU6050_RA_USER_CTRL
* @see MPU6050_USERCTRL_FIFO_EN_BIT
*/
bool MPU6050::getFIFOEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, buffer);
return buffer[0];
}
/** Set FIFO enabled status.
* @param enabled New FIFO enabled status
* @see getFIFOEnabled()
* @see MPU6050_RA_USER_CTRL
* @see MPU6050_USERCTRL_FIFO_EN_BIT
*/
void MPU6050::setFIFOEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, enabled);
}
/** Get I2C Master Mode enabled status.
* When this mode is enabled, the MPU-60X0 acts as the I2C Master to the
* external sensor slave devices on the auxiliary I2C bus. When this bit is
* cleared to 0, the auxiliary I2C bus lines (AUX_DA and AUX_CL) are logically
* driven by the primary I2C bus (SDA and SCL). This is a precondition to
* enabling Bypass Mode. For further information regarding Bypass Mode, please
* refer to Register 55.
* @return Current I2C Master Mode enabled status
* @see MPU6050_RA_USER_CTRL
* @see MPU6050_USERCTRL_I2C_MST_EN_BIT
*/
bool MPU6050::getI2CMasterModeEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, buffer);
return buffer[0];
}
/** Set I2C Master Mode enabled status.
* @param enabled New I2C Master Mode enabled status
* @see getI2CMasterModeEnabled()
* @see MPU6050_RA_USER_CTRL
* @see MPU6050_USERCTRL_I2C_MST_EN_BIT
*/
void MPU6050::setI2CMasterModeEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled);
}
/** Switch from I2C to SPI mode (MPU-6000 only)
* If this is set, the primary SPI interface will be enabled in place of the
* disabled primary I2C interface.
*/
void MPU6050::switchSPIEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_IF_DIS_BIT, enabled);
}
/** Reset the FIFO.
* This bit resets the FIFO buffer when set to 1 while FIFO_EN equals 0. This
* bit automatically clears to 0 after the reset has been triggered.
* @see MPU6050_RA_USER_CTRL
* @see MPU6050_USERCTRL_FIFO_RESET_BIT
*/
void MPU6050::resetFIFO() {
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_RESET_BIT, true);
}
/** Reset the I2C Master.
* This bit resets the I2C Master when set to 1 while I2C_MST_EN equals 0.
* This bit automatically clears to 0 after the reset has been triggered.
* @see MPU6050_RA_USER_CTRL
* @see MPU6050_USERCTRL_I2C_MST_RESET_BIT
*/
void MPU6050::resetI2CMaster() {
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_RESET_BIT, true);
}
/** Reset all sensor registers and signal paths.
* When set to 1, this bit resets the signal paths for all sensors (gyroscopes,
* accelerometers, and temperature sensor). This operation will also clear the
* sensor registers. This bit automatically clears to 0 after the reset has been
* triggered.
*
* When resetting only the signal path (and not the sensor registers), please
* use Register 104, SIGNAL_PATH_RESET.
*
* @see MPU6050_RA_USER_CTRL
* @see MPU6050_USERCTRL_SIG_COND_RESET_BIT
*/
void MPU6050::resetSensors() {
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_SIG_COND_RESET_BIT, true);
}

// PWR_MGMT_1 register

/** Trigger a full device reset.
* A small delay of ~50ms may be desirable after triggering a reset.
* @see MPU6050_RA_PWR_MGMT_1
* @see MPU6050_PWR1_DEVICE_RESET_BIT
*/
void MPU6050::reset() {
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_DEVICE_RESET_BIT, true);
}
/** Get sleep mode status.
* Setting the SLEEP bit in the register puts the device into very low power
* sleep mode. In this mode, only the serial interface and internal registers
* remain active, allowing for a very low standby current. Clearing this bit
* puts the device back into normal mode. To save power, the individual standby
* selections for each of the gyros should be used if any gyro axis is not used
* by the application.
* @return Current sleep mode enabled status
* @see MPU6050_RA_PWR_MGMT_1
* @see MPU6050_PWR1_SLEEP_BIT
*/
bool MPU6050::getSleepEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, buffer);
return buffer[0];
}
/** Set sleep mode status.
* @param enabled New sleep mode enabled status
* @see getSleepEnabled()
* @see MPU6050_RA_PWR_MGMT_1
* @see MPU6050_PWR1_SLEEP_BIT
*/
void MPU6050::setSleepEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled);
}
/** Get wake cycle enabled status.
* When this bit is set to 1 and SLEEP is disabled, the MPU-60X0 will cycle
* between sleep mode and waking up to take a single sample of data from active
* sensors at a rate determined by LP_WAKE_CTRL (register 108).
* @return Current sleep mode enabled status
* @see MPU6050_RA_PWR_MGMT_1
* @see MPU6050_PWR1_CYCLE_BIT
*/
bool MPU6050::getWakeCycleEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, buffer);
return buffer[0];
}
/** Set wake cycle enabled status.
* @param enabled New sleep mode enabled status
* @see getWakeCycleEnabled()
* @see MPU6050_RA_PWR_MGMT_1
* @see MPU6050_PWR1_CYCLE_BIT
*/
void MPU6050::setWakeCycleEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, enabled);
}
/** Get temperature sensor enabled status.
* Control the usage of the internal temperature sensor.
*
* Note: this register stores the *disabled* value, but for consistency with the
* rest of the code, the function is named and used with standard true/false
* values to indicate whether the sensor is enabled or disabled, respectively.
*
* @return Current temperature sensor enabled status
* @see MPU6050_RA_PWR_MGMT_1
* @see MPU6050_PWR1_TEMP_DIS_BIT
*/
bool MPU6050::getTempSensorEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, buffer);
return buffer[0] == 0; // 1 is actually disabled here
}
/** Set temperature sensor enabled status.
* Note: this register stores the *disabled* value, but for consistency with the
* rest of the code, the function is named and used with standard true/false
* values to indicate whether the sensor is enabled or disabled, respectively.
*
* @param enabled New temperature sensor enabled status
* @see getTempSensorEnabled()
* @see MPU6050_RA_PWR_MGMT_1
* @see MPU6050_PWR1_TEMP_DIS_BIT
*/
void MPU6050::setTempSensorEnabled(bool enabled) {
// 1 is actually disabled here
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, !enabled);
}
/** Get clock source setting.
* @return Current clock source setting
* @see MPU6050_RA_PWR_MGMT_1
* @see MPU6050_PWR1_CLKSEL_BIT
* @see MPU6050_PWR1_CLKSEL_LENGTH
*/
uint8_t MPU6050::getClockSource() {
I2Cdev::readBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, buffer);
return buffer[0];
}
/** Set clock source setting.
* An internal 8MHz oscillator, gyroscope based clock, or external sources can
* be selected as the MPU-60X0 clock source. When the internal 8 MHz oscillator
* or an external source is chosen as the clock source, the MPU-60X0 can operate
* in low power modes with the gyroscopes disabled.
*
* Upon power up, the MPU-60X0 clock source defaults to the internal oscillator.
* However, it is highly recommended that the device be configured to use one of
* the gyroscopes (or an external clock source) as the clock reference for
* improved stability. The clock source can be selected according to the following table:
*
* <pre>
* CLK_SEL | Clock Source
* ——–+————————————–
* 0 | Internal oscillator
* 1 | PLL with X Gyro reference
* 2 | PLL with Y Gyro reference
* 3 | PLL with Z Gyro reference
* 4 | PLL with external 32.768kHz reference
* 5 | PLL with external 19.2MHz reference
* 6 | Reserved
* 7 | Stops the clock and keeps the timing generator in reset
* </pre>
*
* @param source New clock source setting
* @see getClockSource()
* @see MPU6050_RA_PWR_MGMT_1
* @see MPU6050_PWR1_CLKSEL_BIT
* @see MPU6050_PWR1_CLKSEL_LENGTH
*/
void MPU6050::setClockSource(uint8_t source) {
I2Cdev::writeBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source);
}

// PWR_MGMT_2 register

/** Get wake frequency in Accel-Only Low Power Mode.
* The MPU-60X0 can be put into Accerlerometer Only Low Power Mode by setting
* PWRSEL to 1 in the Power Management 1 register (Register 107). In this mode,
* the device will power off all devices except for the primary I2C interface,
* waking only the accelerometer at fixed intervals to take a single
* measurement. The frequency of wake-ups can be configured with LP_WAKE_CTRL
* as shown below:
*
* <pre>
* LP_WAKE_CTRL | Wake-up Frequency
* ————-+——————
* 0 | 1.25 Hz
* 1 | 2.5 Hz
* 2 | 5 Hz
* 3 | 10 Hz
* <pre>
*
* For further information regarding the MPU-60X0’s power modes, please refer to
* Register 107.
*
* @return Current wake frequency
* @see MPU6050_RA_PWR_MGMT_2
*/
uint8_t MPU6050::getWakeFrequency() {
I2Cdev::readBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, buffer);
return buffer[0];
}
/** Set wake frequency in Accel-Only Low Power Mode.
* @param frequency New wake frequency
* @see MPU6050_RA_PWR_MGMT_2
*/
void MPU6050::setWakeFrequency(uint8_t frequency) {
I2Cdev::writeBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, frequency);
}

/** Get X-axis accelerometer standby enabled status.
* If enabled, the X-axis will not gather or report data (or use power).
* @return Current X-axis standby enabled status
* @see MPU6050_RA_PWR_MGMT_2
* @see MPU6050_PWR2_STBY_XA_BIT
*/
bool MPU6050::getStandbyXAccelEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, buffer);
return buffer[0];
}
/** Set X-axis accelerometer standby enabled status.
* @param New X-axis standby enabled status
* @see getStandbyXAccelEnabled()
* @see MPU6050_RA_PWR_MGMT_2
* @see MPU6050_PWR2_STBY_XA_BIT
*/
void MPU6050::setStandbyXAccelEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, enabled);
}
/** Get Y-axis accelerometer standby enabled status.
* If enabled, the Y-axis will not gather or report data (or use power).
* @return Current Y-axis standby enabled status
* @see MPU6050_RA_PWR_MGMT_2
* @see MPU6050_PWR2_STBY_YA_BIT
*/
bool MPU6050::getStandbyYAccelEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, buffer);
return buffer[0];
}
/** Set Y-axis accelerometer standby enabled status.
* @param New Y-axis standby enabled status
* @see getStandbyYAccelEnabled()
* @see MPU6050_RA_PWR_MGMT_2
* @see MPU6050_PWR2_STBY_YA_BIT
*/
void MPU6050::setStandbyYAccelEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, enabled);
}
/** Get Z-axis accelerometer standby enabled status.
* If enabled, the Z-axis will not gather or report data (or use power).
* @return Current Z-axis standby enabled status
* @see MPU6050_RA_PWR_MGMT_2
* @see MPU6050_PWR2_STBY_ZA_BIT
*/
bool MPU6050::getStandbyZAccelEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, buffer);
return buffer[0];
}
/** Set Z-axis accelerometer standby enabled status.
* @param New Z-axis standby enabled status
* @see getStandbyZAccelEnabled()
* @see MPU6050_RA_PWR_MGMT_2
* @see MPU6050_PWR2_STBY_ZA_BIT
*/
void MPU6050::setStandbyZAccelEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, enabled);
}
/** Get X-axis gyroscope standby enabled status.
* If enabled, the X-axis will not gather or report data (or use power).
* @return Current X-axis standby enabled status
* @see MPU6050_RA_PWR_MGMT_2
* @see MPU6050_PWR2_STBY_XG_BIT
*/
bool MPU6050::getStandbyXGyroEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, buffer);
return buffer[0];
}
/** Set X-axis gyroscope standby enabled status.
* @param New X-axis standby enabled status
* @see getStandbyXGyroEnabled()
* @see MPU6050_RA_PWR_MGMT_2
* @see MPU6050_PWR2_STBY_XG_BIT
*/
void MPU6050::setStandbyXGyroEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, enabled);
}
/** Get Y-axis gyroscope standby enabled status.
* If enabled, the Y-axis will not gather or report data (or use power).
* @return Current Y-axis standby enabled status
* @see MPU6050_RA_PWR_MGMT_2
* @see MPU6050_PWR2_STBY_YG_BIT
*/
bool MPU6050::getStandbyYGyroEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, buffer);
return buffer[0];
}
/** Set Y-axis gyroscope standby enabled status.
* @param New Y-axis standby enabled status
* @see getStandbyYGyroEnabled()
* @see MPU6050_RA_PWR_MGMT_2
* @see MPU6050_PWR2_STBY_YG_BIT
*/
void MPU6050::setStandbyYGyroEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, enabled);
}
/** Get Z-axis gyroscope standby enabled status.
* If enabled, the Z-axis will not gather or report data (or use power).
* @return Current Z-axis standby enabled status
* @see MPU6050_RA_PWR_MGMT_2
* @see MPU6050_PWR2_STBY_ZG_BIT
*/
bool MPU6050::getStandbyZGyroEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, buffer);
return buffer[0];
}
/** Set Z-axis gyroscope standby enabled status.
* @param New Z-axis standby enabled status
* @see getStandbyZGyroEnabled()
* @see MPU6050_RA_PWR_MGMT_2
* @see MPU6050_PWR2_STBY_ZG_BIT
*/
void MPU6050::setStandbyZGyroEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, enabled);
}

// FIFO_COUNT* registers

/** Get current FIFO buffer size.
* This value indicates the number of bytes stored in the FIFO buffer. This
* number is in turn the number of bytes that can be read from the FIFO buffer
* and it is directly proportional to the number of samples available given the
* set of sensor data bound to be stored in the FIFO (register 35 and 36).
* @return Current FIFO buffer size
*/
uint16_t MPU6050::getFIFOCount() {
I2Cdev::readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer);
return (((uint16_t)buffer[0]) << 8) | buffer[1];
}

// FIFO_R_W register

/** Get byte from FIFO buffer.
* This register is used to read and write data from the FIFO buffer. Data is
* written to the FIFO in order of register number (from lowest to highest). If
* all the FIFO enable flags (see below) are enabled and all External Sensor
* Data registers (Registers 73 to 96) are associated with a Slave device, the
* contents of registers 59 through 96 will be written in order at the Sample
* Rate.
*
* The contents of the sensor data registers (Registers 59 to 96) are written
* into the FIFO buffer when their corresponding FIFO enable flags are set to 1
* in FIFO_EN (Register 35). An additional flag for the sensor data registers
* associated with I2C Slave 3 can be found in I2C_MST_CTRL (Register 36).
*
* If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is
* automatically set to 1. This bit is located in INT_STATUS (Register 58).
* When the FIFO buffer has overflowed, the oldest data will be lost and new
* data will be written to the FIFO.
*
* If the FIFO buffer is empty, reading this register will return the last byte
* that was previously read from the FIFO until new data is available. The user
* should check FIFO_COUNT to ensure that the FIFO buffer is not read when
* empty.
*
* @return Byte from FIFO buffer
*/
uint8_t MPU6050::getFIFOByte() {
I2Cdev::readByte(devAddr, MPU6050_RA_FIFO_R_W, buffer);
return buffer[0];
}
void MPU6050::getFIFOBytes(uint8_t *data, uint8_t length) {
I2Cdev::readBytes(devAddr, MPU6050_RA_FIFO_R_W, length, data);
}
/** Write byte to FIFO buffer.
* @see getFIFOByte()
* @see MPU6050_RA_FIFO_R_W
*/
void MPU6050::setFIFOByte(uint8_t data) {
I2Cdev::writeByte(devAddr, MPU6050_RA_FIFO_R_W, data);
}

// WHO_AM_I register

/** Get Device ID.
* This register is used to verify the identity of the device (0b110100, 0x34).
* @return Device ID (6 bits only! should be 0x34)
* @see MPU6050_RA_WHO_AM_I
* @see MPU6050_WHO_AM_I_BIT
* @see MPU6050_WHO_AM_I_LENGTH
*/
uint8_t MPU6050::getDeviceID() {
I2Cdev::readBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, buffer);
return buffer[0];
}
/** Set Device ID.
* Write a new ID into the WHO_AM_I register (no idea why this should ever be
* necessary though).
* @param id New device ID to set.
* @see getDeviceID()
* @see MPU6050_RA_WHO_AM_I
* @see MPU6050_WHO_AM_I_BIT
* @see MPU6050_WHO_AM_I_LENGTH
*/
void MPU6050::setDeviceID(uint8_t id) {
I2Cdev::writeBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, id);
}

// ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========

// XG_OFFS_TC register

uint8_t MPU6050::getOTPBankValid() {
I2Cdev::readBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, buffer);
return buffer[0];
}
void MPU6050::setOTPBankValid(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, enabled);
}
int8_t MPU6050::getXGyroOffsetTC() {
I2Cdev::readBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
return buffer[0];
}
void MPU6050::setXGyroOffsetTC(int8_t offset) {
I2Cdev::writeBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
}

// YG_OFFS_TC register

int8_t MPU6050::getYGyroOffsetTC() {
I2Cdev::readBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
return buffer[0];
}
void MPU6050::setYGyroOffsetTC(int8_t offset) {
I2Cdev::writeBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
}

// ZG_OFFS_TC register

int8_t MPU6050::getZGyroOffsetTC() {
I2Cdev::readBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
return buffer[0];
}
void MPU6050::setZGyroOffsetTC(int8_t offset) {
I2Cdev::writeBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
}

// X_FINE_GAIN register

int8_t MPU6050::getXFineGain() {
I2Cdev::readByte(devAddr, MPU6050_RA_X_FINE_GAIN, buffer);
return buffer[0];
}
void MPU6050::setXFineGain(int8_t gain) {
I2Cdev::writeByte(devAddr, MPU6050_RA_X_FINE_GAIN, gain);
}

// Y_FINE_GAIN register

int8_t MPU6050::getYFineGain() {
I2Cdev::readByte(devAddr, MPU6050_RA_Y_FINE_GAIN, buffer);
return buffer[0];
}
void MPU6050::setYFineGain(int8_t gain) {
I2Cdev::writeByte(devAddr, MPU6050_RA_Y_FINE_GAIN, gain);
}

// Z_FINE_GAIN register

int8_t MPU6050::getZFineGain() {
I2Cdev::readByte(devAddr, MPU6050_RA_Z_FINE_GAIN, buffer);
return buffer[0];
}
void MPU6050::setZFineGain(int8_t gain) {
I2Cdev::writeByte(devAddr, MPU6050_RA_Z_FINE_GAIN, gain);
}

// XA_OFFS_* registers

int16_t MPU6050::getXAccelOffset() {
I2Cdev::readBytes(devAddr, MPU6050_RA_XA_OFFS_H, 2, buffer);
return (((int16_t)buffer[0]) << 8) | buffer[1];
}
void MPU6050::setXAccelOffset(int16_t offset) {
I2Cdev::writeWord(devAddr, MPU6050_RA_XA_OFFS_H, offset);
}

// YA_OFFS_* register

int16_t MPU6050::getYAccelOffset() {
I2Cdev::readBytes(devAddr, MPU6050_RA_YA_OFFS_H, 2, buffer);
return (((int16_t)buffer[0]) << 8) | buffer[1];
}
void MPU6050::setYAccelOffset(int16_t offset) {
I2Cdev::writeWord(devAddr, MPU6050_RA_YA_OFFS_H, offset);
}

// ZA_OFFS_* register

int16_t MPU6050::getZAccelOffset() {
I2Cdev::readBytes(devAddr, MPU6050_RA_ZA_OFFS_H, 2, buffer);
return (((int16_t)buffer[0]) << 8) | buffer[1];
}
void MPU6050::setZAccelOffset(int16_t offset) {
I2Cdev::writeWord(devAddr, MPU6050_RA_ZA_OFFS_H, offset);
}

// XG_OFFS_USR* registers

int16_t MPU6050::getXGyroOffset() {
I2Cdev::readBytes(devAddr, MPU6050_RA_XG_OFFS_USRH, 2, buffer);
return (((int16_t)buffer[0]) << 8) | buffer[1];
}
void MPU6050::setXGyroOffset(int16_t offset) {
I2Cdev::writeWord(devAddr, MPU6050_RA_XG_OFFS_USRH, offset);
}

// YG_OFFS_USR* register

int16_t MPU6050::getYGyroOffset() {
I2Cdev::readBytes(devAddr, MPU6050_RA_YG_OFFS_USRH, 2, buffer);
return (((int16_t)buffer[0]) << 8) | buffer[1];
}
void MPU6050::setYGyroOffset(int16_t offset) {
I2Cdev::writeWord(devAddr, MPU6050_RA_YG_OFFS_USRH, offset);
}

// ZG_OFFS_USR* register

int16_t MPU6050::getZGyroOffset() {
I2Cdev::readBytes(devAddr, MPU6050_RA_ZG_OFFS_USRH, 2, buffer);
return (((int16_t)buffer[0]) << 8) | buffer[1];
}
void MPU6050::setZGyroOffset(int16_t offset) {
I2Cdev::writeWord(devAddr, MPU6050_RA_ZG_OFFS_USRH, offset);
}

// INT_ENABLE register (DMP functions)

bool MPU6050::getIntPLLReadyEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
return buffer[0];
}
void MPU6050::setIntPLLReadyEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, enabled);
}
bool MPU6050::getIntDMPEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
return buffer[0];
}
void MPU6050::setIntDMPEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, enabled);
}

// DMP_INT_STATUS

bool MPU6050::getDMPInt5Status() {
I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_5_BIT, buffer);
return buffer[0];
}
bool MPU6050::getDMPInt4Status() {
I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_4_BIT, buffer);
return buffer[0];
}
bool MPU6050::getDMPInt3Status() {
I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_3_BIT, buffer);
return buffer[0];
}
bool MPU6050::getDMPInt2Status() {
I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_2_BIT, buffer);
return buffer[0];
}
bool MPU6050::getDMPInt1Status() {
I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_1_BIT, buffer);
return buffer[0];
}
bool MPU6050::getDMPInt0Status() {
I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_0_BIT, buffer);
return buffer[0];
}

// INT_STATUS register (DMP functions)

bool MPU6050::getIntPLLReadyStatus() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
return buffer[0];
}
bool MPU6050::getIntDMPStatus() {
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
return buffer[0];
}

// USER_CTRL register (DMP functions)

bool MPU6050::getDMPEnabled() {
I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, buffer);
return buffer[0];
}
void MPU6050::setDMPEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, enabled);
}
void MPU6050::resetDMP() {
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_RESET_BIT, true);
}

// BANK_SEL register

void MPU6050::setMemoryBank(uint8_t bank, bool prefetchEnabled, bool userBank) {
bank &= 0x1F;
if (userBank) bank |= 0x20;
if (prefetchEnabled) bank |= 0x40;
I2Cdev::writeByte(devAddr, MPU6050_RA_BANK_SEL, bank);
}

// MEM_START_ADDR register

void MPU6050::setMemoryStartAddress(uint8_t address) {
I2Cdev::writeByte(devAddr, MPU6050_RA_MEM_START_ADDR, address);
}

// MEM_R_W register

uint8_t MPU6050::readMemoryByte() {
I2Cdev::readByte(devAddr, MPU6050_RA_MEM_R_W, buffer);
return buffer[0];
}
void MPU6050::writeMemoryByte(uint8_t data) {
I2Cdev::writeByte(devAddr, MPU6050_RA_MEM_R_W, data);
}
void MPU6050::readMemoryBlock(uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address) {
setMemoryBank(bank);
setMemoryStartAddress(address);
uint8_t chunkSize;
for (uint16_t i = 0; i < dataSize;) {
// determine correct chunk size according to bank position and data size
chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;

// make sure we don’t go past the data size
if (i + chunkSize > dataSize) chunkSize = dataSize – i;

// make sure this chunk doesn’t go past the bank boundary (256 bytes)
if (chunkSize > 256 – address) chunkSize = 256 – address;

// read the chunk of data as specified
I2Cdev::readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, data + i);

// increase byte index by [chunkSize]
i += chunkSize;

// uint8_t automatically wraps to 0 at 256
address += chunkSize;

// if we aren’t done, update bank (if necessary) and address
if (i < dataSize) {
if (address == 0) bank++;
setMemoryBank(bank);
setMemoryStartAddress(address);
}
}
}
bool MPU6050::writeMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify, bool useProgMem) {
setMemoryBank(bank);
setMemoryStartAddress(address);
uint8_t chunkSize;
uint8_t *verifyBuffer;
uint8_t *progBuffer;
uint16_t i;
uint8_t j;
if (verify) verifyBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
if (useProgMem) progBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
for (i = 0; i < dataSize;) {
// determine correct chunk size according to bank position and data size
chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;

// make sure we don’t go past the data size
if (i + chunkSize > dataSize) chunkSize = dataSize – i;

// make sure this chunk doesn’t go past the bank boundary (256 bytes)
if (chunkSize > 256 – address) chunkSize = 256 – address;

if (useProgMem) {
// write the chunk of data as specified
for (j = 0; j < chunkSize; j++) progBuffer[j] = pgm_read_byte(data + i + j);
} else {
// write the chunk of data as specified
progBuffer = (uint8_t *)data + i;
}

I2Cdev::writeBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, progBuffer);

// verify data if needed
if (verify && verifyBuffer) {
setMemoryBank(bank);
setMemoryStartAddress(address);
I2Cdev::readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, verifyBuffer);
if (memcmp(progBuffer, verifyBuffer, chunkSize) != 0) {
/*Serial.print("Block write verification error, bank ");
Serial.print(bank, DEC);
Serial.print(", address ");
Serial.print(address, DEC);
Serial.print("!\nExpected:");
for (j = 0; j < chunkSize; j++) {
Serial.print(" 0x");
if (progBuffer[j] < 16) Serial.print("0");
Serial.print(progBuffer[j], HEX);
}
Serial.print("\nReceived:");
for (uint8_t j = 0; j < chunkSize; j++) {
Serial.print(" 0x");
if (verifyBuffer[i + j] < 16) Serial.print("0");
Serial.print(verifyBuffer[i + j], HEX);
}
Serial.print("\n");*/
free(verifyBuffer);
if (useProgMem) free(progBuffer);
return false; // uh oh.
}
}

// increase byte index by [chunkSize]
i += chunkSize;

// uint8_t automatically wraps to 0 at 256
address += chunkSize;

// if we aren’t done, update bank (if necessary) and address
if (i < dataSize) {
if (address == 0) bank++;
setMemoryBank(bank);
setMemoryStartAddress(address);
}
}
if (verify) free(verifyBuffer);
if (useProgMem) free(progBuffer);
return true;
}
bool MPU6050::writeProgMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify) {
return writeMemoryBlock(data, dataSize, bank, address, verify, true);
}
bool MPU6050::writeDMPConfigurationSet(const uint8_t *data, uint16_t dataSize, bool useProgMem) {
uint8_t *progBuffer, success, special;
uint16_t i, j;
if (useProgMem) {
progBuffer = (uint8_t *)malloc(8); // assume 8-byte blocks, realloc later if necessary
}

// config set data is a long string of blocks with the following structure:
// [bank] [offset] [length] [byte[0], byte[1], …, byte[length]]
uint8_t bank, offset, length;
for (i = 0; i < dataSize;) {
if (useProgMem) {
bank = pgm_read_byte(data + i++);
offset = pgm_read_byte(data + i++);
length = pgm_read_byte(data + i++);
} else {
bank = data[i++];
offset = data[i++];
length = data[i++];
}

// write data or perform special action
if (length > 0) {
// regular block of data to write
/*Serial.print("Writing config block to bank ");
Serial.print(bank);
Serial.print(", offset ");
Serial.print(offset);
Serial.print(", length=");
Serial.println(length);*/
if (useProgMem) {
if (sizeof(progBuffer) < length) progBuffer = (uint8_t *)realloc(progBuffer, length);
for (j = 0; j < length; j++) progBuffer[j] = pgm_read_byte(data + i + j);
} else {
progBuffer = (uint8_t *)data + i;
}
success = writeMemoryBlock(progBuffer, length, bank, offset, true);
i += length;
} else {
// special instruction
// NOTE: this kind of behavior (what and when to do certain things)
// is totally undocumented. This code is in here based on observed
// behavior only, and exactly why (or even whether) it has to be here
// is anybody’s guess for now.
if (useProgMem) {
special = pgm_read_byte(data + i++);
} else {
special = data[i++];
}
/*Serial.print("Special command code ");
Serial.print(special, HEX);
Serial.println(" found…");*/
if (special == 0x01) {
// enable DMP-related interrupts

//setIntZeroMotionEnabled(true);
//setIntFIFOBufferOverflowEnabled(true);
//setIntDMPEnabled(true);
I2Cdev::writeByte(devAddr, MPU6050_RA_INT_ENABLE, 0x32); // single operation

success = true;
} else {
// unknown special command
success = false;
}
}

if (!success) {
if (useProgMem) free(progBuffer);
return false; // uh oh
}
}
if (useProgMem) free(progBuffer);
return true;
}
bool MPU6050::writeProgDMPConfigurationSet(const uint8_t *data, uint16_t dataSize) {
return writeDMPConfigurationSet(data, dataSize, true);
}

// DMP_CFG_1 register

uint8_t MPU6050::getDMPConfig1() {
I2Cdev::readByte(devAddr, MPU6050_RA_DMP_CFG_1, buffer);
return buffer[0];
}
void MPU6050::setDMPConfig1(uint8_t config) {
I2Cdev::writeByte(devAddr, MPU6050_RA_DMP_CFG_1, config);
}

// DMP_CFG_2 register

uint8_t MPU6050::getDMPConfig2() {
I2Cdev::readByte(devAddr, MPU6050_RA_DMP_CFG_2, buffer);
return buffer[0];
}
void MPU6050::setDMPConfig2(uint8_t config) {
I2Cdev::writeByte(devAddr, MPU6050_RA_DMP_CFG_2, config);
}

[/sourcecode]

Aqui, pode-se ver o gráfico da variação de posição ao longo do tempo nos eixos x e y gerados pelo acelerômetro. Neste caso, o acelerômetro estava inicialmente sobre uma superfície plana e foi girado 45° para a direita:

fig11

 

Fonte

Adaptado de:

MORF – CODING AND ENGINEERING. MEMS (Part1) – Guide to using accelerometer ADXL345. Disponível em: <http://morf.lv/modules.php?name=tutorials&lasit=31>. Última data de acesso: 11/02/2015.

 

GUIDE TO INTERFACING A GYRO AND ACCELEROMETER WITH A RASPBERRY PI. Disponível em: <http://ozzmaker.com/2014/12/11/berryimu/>. Última data de acesso: 11/02/2015.

One Response to “Sensores IMU – uma abordagem completa – Parte 1”

Deixe um comentário

O seu endereço de e-mail não será publicado.